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1 Introduction

Traditionally, business cycle fluctuations and the effects of macroeconomic policy interven-

tions have been predominantly studied through the lens of models that abstract from micro-

level heterogeneity, such as structural vector autoregressions (VARs) specified in terms of

macroeconomic aggregates or representative agent dynamic stochastic equilibrium (DSGE)

models. However, in view of concerns about rising inequalities in advanced economies in the

aftermath of the global financial crisis, there is growing interest in the distributional impacts

of macroeconomic shocks.

The existing literature has considered two related, but distinct questions. First, what is

the effect of an aggregate shock on the cross-sectional distribution of a micro-level outcome

xit for unit i in period t? Second, how does a particular cross-sectional unit (household,

firm, etc.) or group of units respond to an aggregate shock? In the case of a monetary or

fiscal policy shock, the answer to the first question provides guidance to policy makers who

are concerned about the effect of their actions on the income, wealth, or consumption distri-

bution in the economy. Answers to the second question shed light on the shock propagation

mechanism.

From a methodological perspective, the first question can be answered with a functional

VAR (fVAR) model, that combines a vector of macroeconomic variables with (the log den-

sity of) a cross-sectional distribution; for instance, the one developed in Chang, Chen, and

Schorfheide (2024), henceforth CCS. A repeated cross-section of unit-level observations is

sufficient to estimate an fVAR. The data and modeling requirements to answer the second

question is more stringent: panel data are needed, and one has to develop time series models

that can track unit-level histories and capture the cross-sectional heterogeneity.

Our paper makes two main contributions: first, we develop a novel model that combines

a VAR for macroeconomic aggregates with a panel data component that tracks unit-level

outcomes. The two components are connected as follows: the cross-sectional units respond

to aggregate outcomes. Morever, the aggregate variables are a function of the lagged cross-

sectional distribution of micro-level outcomes. We refer to this model as cross-sectional

units VAR, henceforth csuVAR, discuss its properties, and provide an estimation strategy.

Second, we estimate the csuVAR and the fVAR based on a random sample from a German

administrative data set that contains information about unit-level labor earnings. From the

estimated fVAR, we can obtain an impulse response function (IRF) for the cross-sectional

distribution of earnings to a labor productivity shock. From the estimated csuVAR, we
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construct unit-level earnings responses, which can then be converted into the response of the

cross-sectional distribution, and compared to the fVAR responses.

The csuVAR is tailored to the data set that is used in the empirical analysis. We use

detailed and high-frequency micro-level information entailed in the Sample of Integrated

Labour Market Biographies (SIAB) published by Institute for Employment Research (IAB)

of the German Federal Employment Agency. From the raw data we are able to construct a

panel data set at quarterly frequencies. Individuals i can be in one of three states: they can be

employed (E), unemployed (U), or they can be out of the sample (O) because either they were

randomly replaced or they decided to leave the sample. For each unit i we observe the labor

earnings xit conditional on being employed and the employment state (E, U, or O). Thus,

the csuVAR not only needs to determine the earnings dynamics xit but also the employment

state. There are two sets of latent variables in the csuVAR: the time-dependent state-

transition probabilities, and the cross-sectional densities of xit that feed back into the law of

motion of the macroeconomic aggregates. We provide an asymptotic argument (number of

cross-sectional units tends to infinity) that allows us to replace the transition probabilities by

empirical frequencies, and to replace the unobserved cross-sectional densities, by coefficient

estimates, for finite-dimensional sieve approximations of the log densities, similar to what is

done in the fVAR.

An important aspect of the csuVARmodeling is to capture the heterogeneity at the micro-

level. We pursue a Bayesian approach which specifies a parametric correlated random effects

(CRE) distribution for the heterogeneous coefficients that determine the unit-level earnings

dynamics. The cross-sectional information in the panel data set identifies the hyperparame-

ters associated with the CRE distribution. The CRE distribution, in turn, implicitly serves

as a prior distribution in unit-level time series regressions that determine the heterogeneous

parameters. Our setup is very similar to the one used in recent work on forecasting with

Bayesian panel data models, such as, Liu (2023) and Liu, Moon, and Schorfheide (2023).

Our paper is related to several strands of literature. The fVAR framework is taken from

CCS, who use it to estimate the effect of productivity shocks on the earnings distribution

in the U.S. using data from the Current Population Survey. The framework also has been

recently used by Chang and Schorfheide (2022) to study the effects of monetary policy shocks,

and by Ettmeier (2023) to study the distributional effects of aggregate fiscal policy shocks.

As mentioned previously, while the fVAR can be estimated based on the repeated cross

sections, the csuVAR requires panel data. For many countries, including the U.S., high-
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quality panel data are not available at a frequency that is suitable to study fluctuations of

inequality measures over the business cycle. However, some countries make administrative

data available to researchers. The existing work utilizing administrative data has mostly

used panel local projections (LP) and coefficient heterogeneity takes the form of observed

group heterogeneity, meaning the researcher assumes that the response of say, income or

consumption to an aggregate shock, is identical for units that belong to a particular group.

For instance, Holm, Paul, and Tischbirek (2021) use administrative panel data from Norway

and define groups in terms of liquid asset distribution).1 Amberg, Jansson, Klein, and

Rogantini Picco (2022) and Andersen, Johannesen, Jorgensen, and Peydro (2021) apply

a similar approach to Swedish and Danish administrative data, respectively. While the

panel LP approach provides group specific responses to aggregate shocks, it is challenging

to aggregate the estimates to responses of the cross-sectional distribution, because typically

a large fraction of heterogeneity is ignored and group membership may be correlated with

unit-level outcomes.

Compared to the panel LP analysis we raise the bar and build a model that combines

aggregate time series with a panel model and captures the interactions between the macro

and micro level. We examine to what extent the fVAR and the csuVAR modeling approaches

deliver similar answers to questions about the effect of aggregate shocks on cross-sectional

distributions. The key challenges for any panel approach is to capture the time series proper-

ties (non-linearities due to health and family status changes, job losses, job-to-job transitions,

promotions) and the full extent of cross-sectional heterogeneity.

There exists a large literature at the intersection of labor economics and macroeconomics

on the estimation of idiosyncratic earnings processes. Recent contributions include Guve-

nen (2007, 2009), Browning, Ejrnjes, and Alvarez (2010), Hryshko (2012), Browning and

Ejrnjes (2013), and Hoffmann (2019). Such an earnings process is an important part of

the micro-level component of our csuVAR. The income dynamics literature emphasizes the

decomposition of income in a permanent and transitory compoment and favors unobserved

components models, in part to rationalize consumption decisions. In this regard our earn-

ings process is fairly simple as it evolves according to an AR(1) process driven by a single

idiosyncratic shock alongside some aggregate variables.

There also exists a literature on how aggregate shocks affect the estimation of panel

data models, e.g., Hahn, Kuersteiner, and Mazzocco (2020). These authors focus on the

1Inference methods for panel local projections are studied in Almuzara and Sancibrian (2023).
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fact that aggregate shocks affect units’ decisions and inference on cross-sectional data may

fail to correctly account for decision making of rational agents facing aggregate uncertainty.

We exploit the time series variation in the aggregate variables, to estimate how agents at

the micro level respond to aggregate shocks. Moreover, we use timing assumptions common

in the structural VAR literature to identify the structural shock. In particular, we assume

that aggregate outcomes respond to the cross-sectional distribution with a one-period lag,

whereas unit-level outcomes can respond to aggregate shocks contemporaneously.

The remainder of this paper is organized as follows: Section 2 provides a stylized example

of the interaction of macro- and micro-level dynamics. In Section 3 we review the functional

VAR (fVAR) framework of CCS. The csuVAR is introduced in Section 4. It is tailored to

some specific features of the data set used in the empirical analysis. The model consists

of two interlinked parts: one that describes the evolution of the macroeconomic aggregates

and one that determines the micro-level dynamics. The estimation of the csuVAR and the

computation of impulse response functions (IRFs) are discussed in Section 5. We consider

various generalizations of the baseline model in Section 6. The empirical analysis is presented

in Section 7 and Section 8 concludes. Formal derivations, further information about the fVAR

and csuVAR estimation, and details about the data sets used in the empirical analysis are

relegated to an Online Appendix.

2 Interaction of Macro- and Micro-level Dynamics

To fix ideas, we now present a stylized model that captures the interaction of macro-level

and micro-level dynamics. Let Υt be an ny × 1 vector of macroeconomic aggregates that

evolves according to a first-order vector autoregression (VAR):

Υt = BυυΥt−1 +

∫
Bυx(x̃)[ln p

x
t−1(x̃)]dx̃+ uυ,t, uυ,t

iid∼ pu(ut). (1)

The non-standard feature of this specification is that aggregate outcomes also depend on the

lagged cross-sectional density pxt−1(x) of a cross-sectional variable xit which will be individual-

level income in the application in this paper. The kernel Bυx(x̃) is used to define an integral

operator that maps the log cross-sectional density into an n× 1 vector.

Suppose that at the micro-level the unit-level variable xit follows the law of motion

xit = λi1Υt + λi2Υt−1 + ϕxxxit−1 + ηit, ηit
iid∼ pη(η). (2)
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Here xit responds to contemporaneous (Υt) and lagged (Υt−1) aggregate conditions, and it

depends on its own lag (xit−1). Moreover, it is assumed that the responses to the aggregate

conditions are heterogeneous across units. For now we assume a random effects setting with

(λi1, λi2)
iid∼ pλ(λ1, λ2). (3)

If one assumes that the cross-sectional distribution of xit−1 was p
x
t−1(x), then we can combine

(2) and (3) to deduce that (dropping the i subscripts)

pxt (x) =

∫ [∫
pη(x− λ1Υt − λ2Υt−1 − ϕxxx̃)pλ(λ1, λ2)d(λ1, λ2)

]
pt−1(x̃)dx̃, (4)

which, according to (1), affects aggregate conditions in period t+1 and can be interpreted as

a general equilibrium effect. The system has a lower-triangular structure in that Υt affects

xit and pxt (x) contemporaneously, but pxt (x) affects Υt only with a one-period lag; see (1).

We will maintain the triangular structure throughout the paper.

We will subsequently utilize two empirical strategies to estimate the system. First, we

consider the fVAR framework developed in Chang, Chen, and Schorfheide (2024) to estimate

(1) in combination with a log linearized version of (4). The fVAR approach tracks the

evolution of the cross-sectional density pxt (x), but not the histories xit of the units i. The

second approach, which we label cross-sectional unit VAR, or csuVAR in short, uses (2) to

track the units xit and combines it with the aggregate law of motion (1). Note that from

the cross-section of xit we can construct (an approximation of) pxt (x), which is needed for

the forward iteration.

3 A Functional VAR for Cross-Sectional Data

To make the exposition self-contained, we provide a summary of the functional framework

developed in CCS, which has also been used in Chang and Schorfheide (2022) and Ettmeier

(2023) to study the effects of monetary and fiscal policy shocks, respectively, using U.S. data.

Following the notation in 2, we let Υt be a vector of aggregate variables. In our application

Υt will be partitioned into

Υt =
[
Yt, URt

]
, (5)

where URt is the unemployment rate, and the vector Yt stacks three macroeconomic time

series: log labor productivity, log GDP, and the logarithm of the average cross-sectional

labor earnings x̄t, which will be defined in (18) below.2

2The reason for separating the unemployment rate will become apparent in Section 4.
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Moreover, we continue to use pxt (x) to denote the cross-sectional density of xit. Rather

than working with the densities directly, we take the logarithmic transformation ℓt(x) =

ln pxt (x). The advantage of using log densities, instead of density functions, cumulative

distribution functions (cdfs), or quantiles is that log densities do not have to satisfy mono-

tonicity or non-negativity restrictions. Thus, they can be easily propagated using a linear

law of motion and then ex post normalized to integrate to one in each period.

Starting point of the functional model is a nonlinear state-space representation. The

measurement equation described in Section 3.1 connects the micro-level observations xit to

the unobserved log density ℓt(x). The state transition equation discussed in Section 3.2

provides a joint vector autoregressive law of motion for the macro variables and ℓt(x). In

Section 3.3 we discuss some simplifications of the setup that lead to a finite-dimensional

VAR representation. The computation of IRFs is described in Section 3.4.

3.1 Sampling and Measurement

We assume that in every period t = 1, . . . , T an econometrician observes the macroeconomic

aggregates Υt as well as a sample of Nt draws xit, i = 1, . . . , Nt from the cross-sectional

density pt(x). In practice, Nt is likely to vary from period to period, but for the subse-

quent exposition it will be notationally convenient to assume that Nt = N for all t. The

measurement equation for the cross-sectional observations takes the form

xit
iid∼ pxt (x) =

exp{ℓt(x)}∫
exp{ℓt(x)}dx

, i = 1, . . . , N, t = 1, . . . , T. (6)

Subsequently, we denote the set of time t cross-sectional observations by x1:N,t.

3.2 State Transition

The log density ℓt in (6) can be viewed as an infinite-dimensional state variable. We assume

that Υt and ℓt evolve according to a joint autoregressive law of motion that we express in

terms of deviations from a deterministic component
(
Υ∗, ℓ∗(x)

)
. For notational convenience

we assume that the deterministic component is time-invariant and can be interpreted as a

steady state. This assumption could be easily relaxed by letting (Υ∗, ℓ∗) depend on t. Let

Υt = Υ∗ + Υ̃t, ℓt = ℓ∗ + ℓ̃t. (7)
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The deviations from the deterministic component
(
Υ̃t, ℓ̃t(x)

)
evolve jointly according to the

following linear functional vector autoregressive (fVAR) law of motion:

Υ̃t = BυυΥ̃t−1 +

∫
Bυl(x̃)ℓ̃t−1(x̃)dx̃+ uυ,t (8)

ℓ̃t(x) = Blυ0(x)Υ̃t +Blυ1(x)Υ̃t−1 +

∫
Bll(x, x̃)ℓ̃t−1(x̃)dx̃+ ul,t(x).

The second equation in (8) can be interpreted as a log-linearized (in function space) version

of (4). It includes Ỹt on the right-hand side to capture the assumed triangular structure of

the system. We assume that uυ,t is mean-zero random vector with covariance Ωυυ. Moreover,

ul,t(x) is a random element in a Hilbert space with covariance function Ωll(x, x̃), something

that is not present in (4) but needed to fit the data. We denote the covariance function for

uυ,t and ul,t(x) by Ωυl(x). For the empirical analysis below we add more lags to the system.

(8) can be viewed as the state-transition equation in a functional state-space model.

3.3 Three Simplifications

Equations (6), (7), and (8) define an infinite-dimensional nonlinear state-space model for

the observables {Υt, x1:N,t}Tt=1. Unfortunately, the estimation of this model is not practical,

and we will simplify it in several steps. First, we replace the infinite-dimensional objects

by finite-dimensional objects. Second, we turn the nonlinear state-space model into a linear

state-space model. Third, we let the measurement error variance tend to zero.

A Finite-Dimensional Nonlinear State-Space Model. We replace ℓt(x) by a collection

of finite-dimensional representations, indexed by the superscript (K). Let

ℓ
(K)
t (x) =

K∑
k=1

αk,tζk(x) =
[
ζ1(x), . . . , ζK(x)

]
·


α1,t

...

αK,t

 = ζ ′(x)αt (9)

and ℓ
(K)
∗ (x) = ζ ′(x)α∗. Here ζ1(x), ζ2(x), . . . is a sequence of basis functions. We dropped

the (K) superscripts from the vectors ζ(x), αt, and α∗ to simplify the notation. We define

α̃t = αt − α∗ such that ℓ̃(K)(x) = ℓ
(K)
t (x)− ℓ

(K)
∗ (x).

To construct the measurement equation of the cross-sectional observations in (6), we

define the K-dimensional vector of sufficient statistics

ζ̄(x1:N,t) =
1

N

N∑
i=1

ζ(xit).
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This allows us to write a K’th order representation of the density of x1:N,t:

p(K) (x1:N,t|αt) = exp
{
NL(K)(αt|x1:N,t)

}
, (10)

L(K)(αt|x1:N,t) = ζ̄ ′(x1:N,t)αt − ln

∫
exp {ζ ′(x)αt} dx.

We represent the kernels Bll(x, x̃) and Bυl(x̃), the function Blυ(x), and the functional

innovation ul,t(x) that appear in the state-transition equation (8) as follows:

B
(K)
ll (x, x̃) = ζ ′(x)Bllξ(x̃), B

(K)
υl (x) = Bυlξ(x̃) (11)

B
(K)
lυ (x) = ζ ′(x)Blυ, u

(K)
l,t (x) = ζ ′(x)uα,t,

where ξ(x) is a secondK×1 vector of basis functions and uα,t is aK×1 vector of innovations.

The matrix Bll is of dimension K ×K, Bυl is of dimension ny ×K, and Blυ is of dimension

K × ny. Combining (7), (8), and (11) yields the following vector autoregressive system for

the macroeconomic aggregates and the sieve coefficients (omitting K superscripts):[
Υt −Υ∗

αt − α∗

]
=

[
Bυυ BυlCα

Blυ BllCα

][
Υt−1 −Υ∗

αt−1 − α∗

]
+

[
uυ,t

uα,t

]
, (12)

where Cα =
∫
ξ(x̃)ζ ′(x̃)dx̃. Let u′t = [u′υ,t, u

′
α,t]. We subsequently assume that the innovations

are Gaussian:

ut ∼ N (0,Σ). (13)

The finite-dimensional state-space representation is given by the measurement equation (10)

and the state-transition equation (12). To obtain a more compact notation, we define Wt =

[Υ′
t, α

′
t]
′, absorb the matrix Cα into a general regression coefficient matrix Φ1, and introduce

an intercept Φ0, which leads to

Wt = Φ0 + Φ1Wt−1 + ut, ut ∼ N (0,Σ). (14)

A Finite-Dimensional Linear State-Space Model. To avoid the use of a nonlinear filter

for the evaluation of the likelihood function of the state-space model, one can “linearize” the

measurement equation by taking a second-order Taylor series approximation of ln p(K) (Xt|αt)

in (10) around the maximum likelihood estimator (MLE) α̂t. This approximation can be

written as a linear Gaussian measurement equation:

α̂t = αt +N−1/2ηt, ηt ∼ N
(
0, V̂ −1

t

)
, (15)
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where V̂t is the negative inverse Hessian associated with the log likelihood function evalu-

ated at the MLE. Note that the observations Xt enter the measurement equation indirectly

through the MLE α̂t.

A Finite-Dimensional VAR. If N is large relative to K, then the measurement error

N−1/2ηt is close to zero and αt ≈ α̂t. Thus, one can replace and for the empirical analysis we

simply replace αt in (12) by α̂t and estimate a VAR in the macroeconomic variables and the

estimated sieve coefficients. The estimation can be conveniently implemented in two steps:

1. For each period t = 1, . . . , T estimate the log-spline density model forXt by maximizing

the log likelihood function in (10). This leads to the sequence α̂t.

2. Estimate a version of the VAR in (14), replacing the “true” sieve coefficients αt in the

definition of Wt by α̂t.

CCS provide rates at which (N, T,K) are allowed to tend to infinity to ensure that the

likelihood functions of the three finite-dimensional models are asymptotically equivalent. In

this paper, we are considering an application in which the cross-sectional dimension N is

large and we will work with the finite-dimensional VAR approximation.

3.4 Impulse Response Function

Conditional on a set of fVAR parameters, the IRF can be computed as follows. First, starting

from some initial conditions Υ∗
0 and α

∗
0 we iterate (14) forward to create a baseline trajectory

W 0
h (all shocks are zero) and a shocked trajectory W ∗

h (the macro shock of interest hits in

period h = 1, all other shocks are zero). Taking the paths of α0
h and αsh

h we obtain paths

for the unnormalized log densities which can be converted into approximations of p0h(x) and

pshh (x) using (6).

4 A Cross-Sectional Units VAR

The csuVAR introduced in this section is a generalized version of the model described by

(1) and (2) in Section 2. For the model to be suitable for the data set considered in the

empirical analysis, we introduce a discrete state sit that captures the employment status

of unit i and describe the state transition in Section 4.1. In Section 4.2 we present the
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aggregate component of the csuVAR which in addition to the variables Yt also provides

a law of motion for the employment state transition probabilities. The cross-sectional unit

dynamics are specified in Section 4.3. Finally, we derive an (approximate) likelihood function

for the csuVAR in Section 4.4.

4.1 Micro-data Features and Some Definitions

Our application uses a random subsample of an administrative data set that encompasses

all individuals who have ever been registered with the German social insurance system. A

detailed description of the data set is provided in the Online Appendix. For each unit i we

consider three states sit ∈ {1, 2, 3}: employed (E), unemployed (U), and out-of-sample (O).

An individual reaches the O state by leaving the labor force or by randomly being dropped

from the subsample. In the former case, the individual may re-appear in the sample in a

future period, whereas in the latter case the individual will not re-enter the sample. The

introduction of the O state allows us to treat the panel as balanced, with the convention that

the unit-level outcome xit, which is labor earnings in our application, is unobserved for units

in the O state. More precisely, in every period t = 1, . . . , T our raw data comprise units that

are either employed or unemployed. We define the set of units i = 1, . . . , N in the panel

used for the econometric analysis as the union of individuals that appeared as employed or

unemployed for at least one of the periods t = 1, . . . , T in the raw data. In periods in which

an individual is neither employed nor unemployed, and hence is not part of the raw data set,

we assign the O state.3

Let I{x = a} be the indicator function that is equal to one if x = a and equal to zero

otherwise. Based on state counts we can define

Et =
N∑
i=1

I{sit = 1}, Ut =
N∑
i=1

I{sit = 2}, Ot =
N∑
i=1

I{sit = 3}, URt =
Ut

Et + Ut

, (16)

where URt is the unemployment rate in the sample. The (unobserved) state transition

probabilities are defined as

Πjk,t = Pt{sit = k|sit−1 = j}. (17)

3Consider a unit i that enters the mail in period t = 3 as employed, then stays employed in t = 4, is

unemployed in periods t = 5, and subsequently leaves the data set. Then si1 = si2 = 3 (O), si3 = si4 = 1

(E), si5 = 2 (U), and sit = 3 for t > 5 (O).
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Raw labor earnings x̃it are only observed for individuals who are working, meaning that

we observe x̃itI{sit=1}. To remove a common trend from the unit-level income data and

thereby reduce the spatial correlation of incomes induced by a business cycle, we define the

average of the cross-sectional earnings as

x̄t =

∑N
i=1 x̃itI{sit = 1}∑
i=1 I{sit = 1}

(18)

and transform the unit-level earnings data as follows:

xit = f
(
x̃it/x̄t

)
. (19)

In the application f(·) is the inverse hyperbolic sine function, which is approximately linear

for values close to zero and logarithmic for large positive values.

4.2 Aggregate Model Component

Our goal is to keep the aggregate model component of the csuVAR similar to that of the

fVAR in Section 3. We assume that the aggregate variables follow a VAR law of motion. In

our application, we use the same set of variables Yt as for the fVAR: log labor productivity,

log GDP, and the logarithm of the average cross-sectional labor earnings x̄t, defined in (18).

However, we have to change the definition of Υt: (5) is replaced by

Υt =
[
Yt, {Πj1,t,Πj2,t}3j=1

]
. (20)

Rather than including the unemployment rate URt we have to use the unobserved transition

probabilities Πjk,t defined in (17) to be able to characterize the evolution of sit. Given initial

levels (E0, U0, O0) the evolution of the unemployment rate is determined by the Πjk,ts and

can be excluded from Υt.
4 We assume that Υt evolves according to (the extension to a pth

order process is straightforward)

Υt = BυυΥt−1 +

∫
Bυx(x̃)ℓt−1(x̃)dx̃+ uυ,t, uυ,t ∼ N (0,Συυ), (21)

where ℓt(x) is the (unnormalized) log density of xit, see (6), and captures the feedback from

the micro level to the aggregate level. To simplify the notation going forward, we combine

Bυυ, Bυx(·), and the non-redundant elements of Συυ in the (at this point infinite-dimensional)

parameter vector θV AR.

4The use of probabilities instead of unnormalized probabilities in the vector Υt allowed for a more

accurate tracking of the unemployment rate URt, defined in (16).
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4.3 Micro-level Model Component

We make the simplifying assumption that the state-transitions at the micro-level only depend

on the aggregate probabilities Πjk,t but not on unit-level characteristics. Thus, the only part

of the model that remains to be specified is the labor income of the employed (sit = 1).

Define the selection matrix Mυ that selects elements of the aggregate variables Υt and their

lags Υt−1, i.e.,

Zt =Mυ


1

Υt

Υt−1

 .
We assume that the conditional density of earnings takes the following form

p(xit|·) =


pN
(
xit|γ′iZt + ρxit−1, σ

2
i

)
if sit−1 = 1, sit = 1

pN
(
xit|γ′UEZt, σ

2
UE

)
if sit−1 = 2, sit = 1

pN
(
xit|γ′OEZt, σ

2
OE

)
if sit−1 = 3, sit = 1

, (22)

where pN (x|µ,Σ) is the probability density function for X ∼ N (µ,Σ). The assumption

of conditional Normal distributions is preliminary and has been made for computational

convenience. For the heterogeneous parameters of the E-to-E transitions we assume the

following correlated random effects distribution:

p(γi|xi0, σ2
i , ξ) = pN

(
γi|γ0 + γ

s
xiτi0 , σ

2
i V γ

)
(23)

p(σ2
i |ξ) = pIG

(
σ2
i |ν, s2

)
,

where the period τi0 is the first period in which unit i is employed. Moreover, pIG(·) is

the probability density function of an Inverse Gamma distribution, parameterized as scaled

inverse χ2 distribution in terms of degrees of freedom ν and sum of squared residuals s2.

Thus, we can define the vector of hyperparameters as

ξ =
[
γ
0
, γ

s
, vech(V γ), ν, s

2
]
,

where vech(·) is the vector half that collects the non-redundant elements of a symmetric

matrix. We stack the homogeneous parameters in the vector

θcsu =
[
ρ, γUE, σ

2
UE, γOE, σ

2
OE

]
.

If we combine (22) and (23) we can obtain a generalization of the law of motion of the

cross-sectional density in (4). Because of the discrete states and the correlated random
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effects structure, the model implies that one has to keep track of the conditional distribution

pxt (x|xτ0) and the marginal distribution p
xτ0
t (xτ0), from which the marginal density pt(x) and

its logarithm ℓt(x) can be obtained. In general, such a calculation is not practical because

it involves high-dimensional integration and it is very sensitive to assumptions about micro-

level dynamics and heterogeneity. Instead, we reconstruct ℓt−1(x) from the micro data, using

the same technique as in Section 3. Details follow in the next subsection.

4.4 Likelihood Function

Data Generating Process (DGP). Let Πt collect the transition probabilities Πjk,t and Dit

collect the observables sit and xitI{sit = 1}. We use Π1:τ to denote the sequence {Π1, . . . ,Πτ}
and let

D1:N,1:τ = {D11, . . . ,DN1, . . . , D1τ , . . . ,DNτ}.

Recall that the only observables are Y1:T and D1:N,1:T . All other objects are unobserved.

Starting point is the joint density of (Y1:T ,Π1:T , ℓ1:T ,D1:N,1:T , γ1:N , σ
2
1:N) conditional on the

homogeneous parameters (θV AR, θcsu, ξ) and the initial conditions (Y0, ℓ0). In a first-order

vector autoregressive setting (p = 1) the joint density can be factorized as follows:

p
(
Y1:T ,Π1:T , ℓ1:T ,D1:N,1:T , γ1:N , σ

2
1:N |Y0,Π0, ℓ0, θV AR, θcsu, ξ

)
(24)

=
T∏
t=1

{
p(Yt,Πt|Yt−1,Πt−1, ℓt−1, θV AR)︸ ︷︷ ︸

VAR Part

× p(s1:N,t|Πt,D1:N,t−1)︸ ︷︷ ︸
Panel Part I

×
( N∏

i=1

[
p(γi, σ

2
i |xit, ξ)

]I{t=τi0}[p(xit|Yt, Yt−1,Dit−1, γi, σ
2
i , θcsu)

]I{sit=1}
)

︸ ︷︷ ︸
Panel Part II

×
( T∏

t=1

I{ℓt = ft(·)}
)

︸ ︷︷ ︸
Panel Part III

}
.

The VAR Part in (24) describes the evolution of the aggregate variables Υt, which is

given by the VAR in (21). We assume a lower-triangular structure of the system, in which

cross-sectional outcomes only enter with a lag, through the log density ℓt−1(x), but not

contemporaneously. Panel Part I summarizes the evolution of the unit-level states sit, which

depends on the aggregate transition probabilities Πt, determined in the VAR Part. For

now, we assume that the state transition does not depend on unit-level features, meaning
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that entry and exit into employment is random. Panel Part II describes the conditional

distribution of xitI{sit = 1} which is given by (23). We assume that earnings conditional

on the aggregate variables (Yt, Yt−1) are independent across i. Recall that τi0 is the first

period t in which unit i enters the employment state. At this point its unit-level parameters

are determined which leads to the term
[
p(γi, σ

2
i |xit, ξ)

]I{t=τi0}. From the unit-level laws of

motion and assumptions about coefficient heterogeneity, the cross-sectional densities ℓt are

determined; see the example in (4). We denote this relationship by the function ft(·). We

summarize the key assumptions which will be relaxed in Section 6:

Assumption 1 The data generating process satisfies the following conditions:

� (LT) The system is lower triangular in that the cross-sectional distribution of x does

not affect Υt contemporaneously.

� (No-Sel) The evolution of sit does not depend on unit-level characteristics.

� (P-CRE) Parametric correlated random effects: the distribution of (γi, σ
2
i ) is para-

metric and conditional on the initial value xiτi0; see (23).

Re-arranging Terms. To facilitate the estimation of the csuVAR, it is convenient to

integrate out (γi, σ
2
i ) and re-arrange the terms in (24) as follows:

p
(
Y1:T ,Π1:T , ℓ1:T ,D1:N,1:T |Y0,Π0, ℓ0, θV AR, θcsu, ξ

)
(25)

=

( T∏
t=1

p(Yt,Πt|Yt−1,Πt−1, ℓt−1, θV AR)

)
︸ ︷︷ ︸

VAR Part

×
( T∏

t=1

p(s1:N,t|Πt,D1:N,t−1)

)
︸ ︷︷ ︸

Panel Part I

×
( N∏

i=1

∫ T∏
t=1

[
p(γi, σ

2
i |xit, ξ)

]I{t=τi0}[p(xit|Yt, Yt−1,Dit−1, γi, σ
2
i , θcsu)

]I{sit=1}
d(γi, σ

2
i )

)
︸ ︷︷ ︸

Panel Part II

×
( T∏

t=1

I{ℓt = ft(·)}
)

︸ ︷︷ ︸
Panel Part III

.

If Πt were observed and ℓt be approximated by a sieve as in (9) with known coefficient αt,

then the estimation of θV AR in (VAR Part) would be equivalent to estimating the first ny

equations of the fVAR in Section (4), except that Yt is replaced by the larger vector Υt. Panel

Part I describes the employment state transition for each unit i. The parameters θcsu are
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concentrated in Panel Part II and can be estimated using dynamic panel data techniques.

In the remainder of this subsection, we will discuss how to integrate out the unobserved

transition probabilities Πt and to determine ℓt from an approximation of the function ft(·)
based on the cross-sectional observations x1:N,t.

Replacing Πt by Π̂t. Suppose that the sequence ℓt is observed. Formally, Πt is a latent

variable and needs to be integrated out from (25). Because of Assumption 1(No-Sel) we can

rewrite the Panel Part I expression as

p(s1:N,t|Πt,D1:N,t−1) = p(s1:N,t|Πt, s1:N,t−1).

This density can be viewed as a measurement equation of a state-space model, and the

VAR Part p(Yt,Πt|Yt−1,Πt−1, ℓt−1, θV AR) is the state-transition equation. For each period t,

starting from a distribution p(Πt−1|Y1:t−1, s1:N,1:t−1, ℓ1:t−2, θV AR), the filter computes

p(Yt,Πt|Y1:t−1, s1:N,1:t−1, ℓ1:t−1, θV AR) (26)

=

∫
p(Yt,Πt|Yt−1,Πt−1, ℓt−1, θV AR)p(Πt−1|Y1:t−1, s1:N,1:t−1, ℓ1:t−2, θV AR)dΠt−1

p(Yt, s1:N,t|Y1:t−1, s1:N,1:t−1, ℓ1:t−1, θV AR) (27)

=

∫
p(s1:N,t|Πt, s1:N,t−1)p(Yt,Πt|Y1:t−1, s1:N,1:t−1, ℓ1:t−1, θV AR)dΠt

p(Πt|Y1:t, s1:N,1:t, ℓ1:t−1, θV AR) (28)

∝ p(s1:N,t|Πt, s1:N,t−1)p(Yt,Πt|Y1:t−1, s1:N,1:t−1, ℓ1:t−1, θV AR).

(26) is the predictive density for (Yt,Πt), (27) is the predictive density for s1:N,t, and (28) is

the updating equation. The output of the filter can be used to express∫ ( T∏
t=1

p(Yt,Πt|Yt−1,Πt−1, ℓt−1, θV AR)p(s1:N,t|Πt,D1:N,t−1)

)
dΠ1:T (29)

=
T∏
t=1

p(Yt, s1:N,t|Y1:t−1, s1:N,1:t−1, ℓ1:t−1, θV AR).

The two terms on the right-hand side of (28) can be interpreted as likelihood function

and prior for Πt and the left-hand side is the posterior. The log likelihood function can be

approximated using a second-order Taylor approximation around the maximum likelihood

estimator (MLE)

Π̂jk,t =
Njk,t∑3
j=1 Π̂jk,t

, (30)
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where Njk,t =
∑N

i=1 I{sit−1 = j, sit = k} is the number of transitions from state j to k. The

negative inverse Hessian evaluated at the MLE is proportional to 1/N which means that

information accumulates at rate N . At the same time, the precision of the prior distribution

is bounded by a function of Συυ in (21). Using standard Bayesian large sample arguments,

the posterior distribution in (28) concentrates around Π̂t. In turn, in period t+ 1:

p(Yt+1,Πt+1|Y1:t, s1:N,1:t, ℓ1:t, θV AR) ≈ p(Yt+1,Πt+1|Yt, Π̂t−1, ℓt, θV AR)

p(Yt+1, s1:N,t+1|Y1:t, s1:N,1:t, ℓ1:t, θV AR) ≈ p(Yt+1, Π̂t+1|Yt, Π̂t, ℓt, θV AR).

Formally, one can show the following result:5

Theorem 1 Suppose that Assumption 1 is satisfied. Then,∣∣∣∣ T∑
t=1

ln p(Yt, s1:N,t|Y1:t−1, s1:N,1:t−1, ℓ1:t−1, θV AR)− ln p(Yt+1, Π̂t+1|Yt, Π̂t, ℓt, θV AR)

∣∣∣∣ ≲ T

N
.

The Panel Part III Term. The cross-sectional density ℓt is determined by the law of

motion of xit in Section 4.3. As discussed previously, the direct calculation of ℓt generally

involves a complicated integration. Instead, we will construct ℓt from the cross sectional

distribution of xit. To fix ideas, consider the following example. Suppose that

xit = γi(1− ρ) + ρxit−1 + ηit, γi ∼ N (0, V γ), ηit ∼ N (0, 1).

Let µx,t = 0 and vx,t = V γ + 1/(1− ρ2). The direct calculation leads to

ℓt(x) = −1

2
ln(2π)− 1

2
ln vx,t −

1

2vx,t
(x− µx,t)

2. (31)

Alternatively, we can use x1:N,t to compute sample mean and variance µ̂x,t and v̂x,t and use

it to construct the approximation ℓ̂t(x) by replacing population moments in (31) by sample

moments. This generates an approximation error that vanishes as N −→ ∞.

In practice we use the same approach as in Section 3 to approximate ℓt. We use the

K-dimensional sieve approximation ℓ
(K)
t (x) = ζ ′(x)αt in (9). Let α̂t be the MLE of αt based

on the sample x1:N,t. We note that ∥αt − α̂t∥ ≲
√
K/N ; see Stone (1990). Provided that K

5We write |f(N,K;ω)| ≲ αK,N to mean that there is a constant C such that for every small ϵ > 0 we

can find (K0, N0) such that Pω {|f(N,K;ω)| ≤ CαK,N} ≥ 1 − ϵ for K > K0 and N > N0. Moreover, we

write f(N,K;ω) ≍ 1± αK,N to denote that |f(N,K;ω)− 1| ≲ αK,N .
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grows sufficiently fast with N such that the approximation bias through the K-dimensional

sieve is of strictly smaller order than the standard deviation of α̂t. Let

ℓ̂
(K)
t (x) = ζ ′(x)α̂t. (32)

Then, uniformly for x ∈ [x, x̄]

∥ℓt(x)− ℓ̂t(x)∥ = Op(
√
K/N).

Theorem 2 Suppose that Assumption 1 is satisfied. Then,∣∣∣∣ T∑
t=1

ln p(Yt+1, Π̂t+1|Yt, Π̂t, ℓt, θV AR)− ln p(Yt+1, Π̂t+1|Yt, Π̂t, ℓ̂t, θV AR)

∣∣∣∣ ≲ T

√
K

N
.

Approximate Likelihood Function. Based on Theorems 1 and 2 we estimate the csuVAR

using the approximate likelihood function

p̂
(
Y1:T , Π̂1:T , ℓ̂1:T ,D1:N,1:T |Y0,Π0, ℓ̂0, θV AR, θcsu, ξ

)
(33)

=

( T∏
t=1

p(Yt, Π̂t|Yt−1,Πt−1, ℓ̂t−1, θV AR)

)
︸ ︷︷ ︸

VAR Part

×
( N∏

i=1

∫ T∏
t=1

[
p(γi, σ

2
i |xit, ξ)

]I{t=τi0}[p(xit|Yt, Yt−1,Dit−1, γi, σ
2
i , θcsu)

]I{sit=1}
d(γi, σ

2
i )

)
︸ ︷︷ ︸

Panel Part II

,

where ℓ̂t is given in (32).

5 csuVAR Estimation and IRF Computation

We now turn to the estimation of the csuVAR. We consider a Bayesian approach based on

the approximate likelihood function in (33). The csuVAR is set up so that the aggregate

model component and the micro-level component can be estimated separately. Details follow

in Sections 5.1 and 5.2, respectively. Section 5.3 summarizes the main steps of the model

estimation. The computation of impulse response functions (IRFs) is discussed in Section 5.4.
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5.1 Estimation of Aggregate Model Component

To make the estimation of the aggregate component of the csuVAR in (21) operational, we

proceed as in the case of the fVAR and replace the log density ℓt−1(x) and the kernel Bυx(x)

by K-dimensional approximations. Allowing for p ≥ 1 lags we approximate (21) by

Υt = Φ0 +

p∑
j=1

(
Φυ

jΥt−j + Φα
j α̂t−j

)
+ uυ,t, uυ,t ∼ N (0,Συυ). (34)

To make the aggregate part of the csuVAR structural, we assume that

uυ,t = Σtr
υυΩϵt, (35)

where Σtr
υυ is the lower triangular Cholesky factor of Συυ and Ω is an orthonormal matrix.

In our application we will set Ω = I and focus on the response to the first shock. Note that

(34) has the same structure as the finite-dimensional approximation of the fVAR (14) with

Wt = [Y ′
t , α̂

′
t]. The only difference is that in the csuVAR the vector α̂t is not determined as

part of the vector autoregressive law of motion. Hence, we use the same estimation method

for (14) and (34). We follow the approach taken in Chang, Chen, and Schorfheide (2024)

and Chang and Schorfheide (2022), which builds on Chan (2022). We sketch the basic idea

in the context of the csuVAR and provide further details in the Online Appendix.

Likelihood Function. The structural VAR by (34) and (35) can be rewritten as follows:

AΥt =

p∑
j=1

(
Bυ

j Υt−j +Bα
j α̂t−j

)
+B0 + ηt, ηt = D1/2Ωϵt, (36)

where D is a diagonal matrix with diagonal elements Di and A is a lower-triangular matrix

with ones on the diagonal. Multiplying both sides of the equality by A−1 we deduce that

A−1D1/2 = Σtr
υυ, A

−1Bα
j = Φα

j , and A
−1Bυ

j = Φυ
j , j = 0. . . . , p. Note that ηt ∼ N (0, D).

Using the lower-triangular structure of the A matrix, define the (i− 1)× 1 vectors6

Ai = [Ai,1, . . . , Ai,i−1], Υ̃<i,t = −[Υ1,t, . . . ,Υi−1,t]
′, i = 2, . . . , n.

Moreover, let ki = p(nυ + nα) + i− 1 and define the ki × 1 vectors

Zit =
[
Ỹ ′
<i,t,Υ

′
t−1, α̂

′
t−1, . . . ,Υ

′
t−p, α̂

′
t−p, 1

]
, βi =

[
A′

i, B
υ′

i·,1, B
α′

i·,1, . . . , B
υ′

i·,p, B
α′

i·,p, B
′
i·,0
]′
,

6In slight abuse of notation, we are changing the definition of “Z” (see also (22)) here to generically

denote the regressors in the VAR equation.
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where Bi·,j is the ith row of the matrix Bj. Finally, define Υi to be the T × 1 vector with

elements Υit, Zi the T × ki matrix with rows Z ′
it, and ηi the T × 1 vector with elements ηit.

Then we can write the ith equation in matrix form as

Υi = Ziβi + ηi. (37)

Because A is lower-triangular with ones on the diagonal, the Jacobian associated with the

change-of-variables from ηt to Υt in (36) is equal to one. In turn, the likelihood function for

the system is the product of the likelihood functions for each variable i. Let β = (β1, . . . , βn).

Then:

p(Υ|β,D) ∝
n∏

i=1

|Di|−1/2 exp

{
− 1

2Di

(Υi − Ziβi)
′(Υi − Ziβi)

}
. (38)

As always in structural VAR settings, the rotation matrix Ω does not enter the likelihood

function.

Prior Distribution. Chan (2022) proposes a prior distribution that assumes that pa-

rameters are independent across equations. This implies that the model can be estimated

equation-by-equation, speeding up the Bayesian computations in high-dimensional settings

considerably. The prior takes the form

p(β,D|λ) =
n∏

i=1

p(βi|Di, λ)p(Di|λ), (39)

where λ is a vector of hyperparameters. For each pair (βi, Di) we use a Normal-Inverse

Gamma ( N IG) distribution of the form

βi|(Di, λ) ∼ N
(
β
i
, DiV

β
i

)
, Di|λ ∼ IG

(
νi, Si

)
. (40)

This setup is very flexible, because it is straightforward to impose equation-specific restric-

tions. Further details are provided in Section 7 and the Online Appendix.

Posterior Sampling. The conjugate form of the prior implies that the posterior distribution

of (β,D) also belongs to the N IG family. Thus, we can generate posterior draws of (β,D)

by direct sampling and because both likelihood and prior factorize in terms of (βi, Di),

i = 1, . . . , n we can sample the parameters for each equation separately.

5.2 Micro-level Model Component

For the micro-level component we need to estimate the vector of homogeneous coefficients

θcsu, the heterogeneous coefficients (γ1:N , σ
2
1:N), and the hyperparameters ξ of the correlated
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random effects distribution. The estimation is based on the Panel Part II in (33). For

illustrative purposes assume that T = 6 and suppose that unit i = ι is unemployed in

periods t = 1, 2, she is employed in periods t = 3, 4, 5, and subsequently leaves the panel.

Then,

sι1 = sι2 = 2, sι3 = sι4 = sι5 = 1, sι6 = 3,

and τι0 = 3. Hence, using (22) the contribution of unit ι to Panel Part II in (33) can be

written as∫ T∏
t=1

[
p(γι, σ

2
ι |xιt, ξ)

]I{t=τι0}[p(xιt|Yt, Yt−1,Dιt−1, γι, σ
2
ι , θcsu)

]I{sιt=1}
d(γι, σ

2
ι ) (41)

= pN
(
xι3|γ′UEZ3, σ

2
UE

) ∫ 5∏
t=4

pN
(
xιt|γ′ιZt + ρxιt−1, σ

2
ι

)
p(γι, σ

2
ι |xι3, ξ)d(γι, σ2

ι ).

We deduce that for the estimation of (γUE, σ
2
UE) and (γOE, σ

2
OE) we can pool observations

across units and time periods based on (sit−1 = 2, sit = 1) and (sit−1 = 3, sit = 1), re-

spectively. Moreover, the unit-specific parameters (γi, σ
2
i ) can be integrated out from the

likelihood function, conditional on (ρ, ξ) for each unit separately. In the remainder of this

subsection we provide further details on the Bayesian estimation.

Estimating (γUE, σ
2
UE) and (γOE, σ

2
OE). For the initial distribution of earnings conditional

on entering the employment state sit = 1 from unemployment sit−1 = 2 or from outside of

the earnings panel sit−1 = 3 is given by the linear Gaussian regression models

xit = γ′·EZt + u·Eit , u·Eit ∼ N (0, σ2
·E), (42)

where the dot in the E· super- and subscripts is a placeholder for U or O; see (22). We use

a conjugate N IG prior of the form

p(γE·|σ2
E·) = pN

(
γE·|γE·, σ

2
E·V

E·
γ

)
, p(σ2

E·) = pIG
(
σ2
E·|νE·, s

2
E·
)
. (43)

The posterior distribution also belongs to the N IG family:

p(γE·|σ2
E·,Υ1:T ,D1:N,1:T ) = pN

(
γE·|γ̄E·, σ

2
E·V̄

E·
γ

)
(44)

p(σ2
E·,Υ1:T ,D1:N,1:T ) = pIG

(
σ2
E·|ν̄E·, s̄

2
E·
)
,
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where the parameters of the posterior distribution are given by the standard formulas:

V̄ E·
γ =

(
(V E·

γ )−1 +
N∑
i=1

T∑
t=1

I{sit−1 = ·, sit = 1}ZtZ
′
t

)−1

(45)

γ̄E· = V̄ E·
γ

(
(V E·

γ )−1γ
E· +

N∑
i=1

T∑
t=1

I{sit−1 = ·, sit = 1}Ztxit

)

s̄2E· = s2E· +
N∑
i=1

T∑
t=1

I{sit−1 = ·, sit = 1}ZtZ
′
t + γ′·E(V

E·
γ )−1γ·E − γ̄′·E(V̄

E·
γ )−1γ̄·E

ν̄E· = νE· +
N∑
i=1

T∑
t=1

I{sit−1 = ·, sit = 1}.

Estimation of (γi, σ
2
i ) Conditional on (ρ, ξ). Given (ρ, ξ) the posterior distribution of

γi, σ
2
i can be calculated separately for each unit i. Write

x̃it = xit − ρxit−1 = γ′iZt + uit, uit ∼ N (0, σ2
i ). (46)

This regression is combined with the N IG prior distribution in (23). The resulting posterior

distribution has the same form as the posterior in (44), after making straightforward adjust-

ments to the formulas in (45): there is no summation over i and the indicator function has

to be replaced by I{sit = 1, sit−1 = 1}.

Estimation of (ρ, ξ). Inference for (ρ, ξ) is based on the the marginal likelihood function

N∏
i=1

∫ T∏
t=1

[
p(γi, σ

2
i |xit, ξ)

]I{t=τi0}[pN (xit|γ′iZt + ρxit−1, σ
2
ι )
]I{sιt=1,sit−1=1}

d(γi, σ
2
i )

=
N∏
i=1

(2π)−(ν̄i−νi)/2
2ν̄i/2Γ(ν̄i/2)|s2i |νi/2|V i

γ|−1/2

2νi/2Γ(νi/2)|s̄2i |ν̄i/2|V̄ i
γ |−1/2

, (47)

where (V̄ i
γ , s̄

2
i , ν̄i) are defined similarly as (V̄ E·

γ , s̄2E·, ν̄E·) in (45). The marginal likelihood is

combined with a prior distribution p(ρ, ξ) and draws from the posterior are generated using

a random walk Metropolis Hastings algorithm; see, for instance, Herbst and Schorfheide

(2015).

5.3 Summary of csuVAR Estimation

Posterior inference can be implemented sequentially, using the following steps:

1. Use transition counts to estimate the transition probabilities Π̂jk,t; see (30).
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2. Follow the steps outline in Section 3 to estimate the sieve coefficients α̂t for the ap-

proximation ℓ̂
(K)
t (x) = ζ ′(x)α̂t in (32).

3. Generate draws from the posterior distribution of the VAR block coefficients in (36);

see Section 5.1. Note that {Πj1,t,Πj2,t}3j=1 in the definition of Υt, see (20), is replaced

by {Π̂j1,t, Π̂j2,t}3j=1.

4. Generate draws from the posterior distributions of (γUE, σ
2
UE) and (γOE, σ

2
OE); see

Section 5.2.

5. Generate draws from the posterior distribution of (ρ, ξ); see Section 5.2.

6. For each (ρ, ξ)j draw, generate a draw from the conditional posterior distribution of

(γi, σ
2
i ), i = 1, . . . , N , given (ρ, ξ)j.

Currently we are taking the following short-cuts: Step 4: we run an OLS regression and then

later on resample the residuals in our simulations. Step 5: we use a fixed effects regression

of xit on xit−1, xiτ0 and Zt to construct estimates ρ̂, and ξ̂. Step 6: conditioning on (ρ̂, ξ̂) we

compute the posterior means of (γi, σ
2
i ).

5.4 IRF Computation

The empirical analysis focuses on micro-level impulse responses to aggregate shocks.

We will describe the IRF computation conditional on a particular set of parameters

(θV AR, θcsu, ξ, γ1:N , σ
2
1:N). The computation can either be conducted once for a point es-

timate, or repeatedly for parameter draws from the posterior distribution. Because of the

nonlinearities in the model, the IRFs are, at least in principle, state, sign, and size depen-

dent. We start from an initial value (Υ∗
−p+1:0,D∗

1:N,0) which in the application we match to

a particular time period. We generate a baseline trajectory, denoted by a 0 superscript, and

a shocked trajectory, denoted by a sh superscript. This simulation can be repeated multiple

times. For horizons h = 1 to H

1. Aggregate Variables: iterate (34) forward by one period to generate Υ0
h and Υsh

h ,

respectively. Use the same innovation ϵt drawn from a N (0, I) for both trajectories.

The only exception is period h = 1, where the innovation for the shocked trajectory is

set to the desired value.
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2. Unit-level Employment States: based on the transition probabilities (Π0
h,Π

sh
h ) generate

the states (s01:N,h, s
sh
1:N,h). To reduce the simulation noise, we generate a single draw

Uit ∼ U [0, 1] for each unit i and use probability integral transformations based on

(Π0
j·,h,Π

sh
j·h) to determine s0ih and sshih , respectively.

3. Unit-level Earnings for the Employed: define Z0
t and Zsh

t based on (Υ0
t ,Υ

0
t−1) and

(Υsh
t ,Υ

sh
t−1). Then use (22) to draw x0it and x

sh
it .

4. Cross-Sectional Density: estimate K-dimensional approximations of ℓ0t and ℓsht based

on x01:N,t and x
sh
1:Nt following the steps in Section 3. The log densities can be converted

into densities as needed.

6 Generalizations

(In this section we will discuss the relaxation of parts of Assumption 1 and how to make the

parametric features of the micro-level component of the csuVAR more flexible.)

7 Empirical Analysis

In the empirical application we estimate the fVAR and the csuVAR based on a subsample of

an administrative data set that contains earning information for individuals registered in the

social security system. One of the questions that we will investigate is whether the estimation

of the fVAR delivers a similar estimate of the effect of a productivity shock on the cross-

sectional distribution of earnings as the fVAR analysis. A brief summary of the aggregate

and micro-level data and the shock identification is provided in Section 7.1. The results from

the fVAR and csuVAR analysis are presented in Sections 7.2 and 7.3, respectively. Finally,

we comment on the relationship between our empirical strategies and the widely-used local

projections in Section 7.4.

7.1 Data and Shock Identification

The micro-level observations used in our analysis are obtained from the Institute für

Arbeitsmarkt- und Berufsforschung (IAB), Germany. The dataset covers approximately

80% of the total German labor force, where self-employed and civil servants are not included
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Figure 1: Estimated Densities for Three Time Periods
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Notes: The solid lines represent the ML estimates k̂xt (x) based on the K-dimensional sieve approximation of
the log density. We overlay histograms of the raw data.

in the sample. The data is in the form of labor market spells, which report the average

daily wage during the spell together with the number of working days. We use a random

2% sample of the population (all individuals who have ever been registered with the social

insurance system). From this data set we construct the observations (xit, sit) as discussed in

Section 4.1.

The vector Yt includes real GDP per capita and labor productivity. Real GDP per capita

is obtained from the Federal Statistical Office, Germany. Labor productivity is measured

as total real GDP over total hours worked, which also is obtained from the Federal Statis-

tical Office. The average level of (transformed) earnings, the unemployment rate, and the

estimated transition probabilities Π̂jk,t are constructed from the IAB micro data; see (16),

(18), and (30). The fVAR and the csuVAR are estimated on data from 1992:Q1 to 2019:Q4.

More detailed information on the data set is provided in the Online Appendix.

We order labor productivity first in the vector Yt (and hence Υt) and use a recursive shock

identification scheme. Formally, we set Ω in (35) equal to the identity matrix. We focus on

the first shock which we interpret as a general productivity shock. Our methodology can

be combined with any other identification scheme. In particular, one can examine the effect

of monetary or fiscal shocks. We chose technology shocks because they generally explain a

larger fraction of the business cycle fluctuations than policy shocks.
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Figure 2: fVAR IRFs of Aggregate Variables
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Notes: The solid lines represent posterior mean (pointwise) responses and the dashed lines delimit 90%
credible intervals. x-axis corresponds to time horizon.

7.2 Results from the fVAR

Estimated Cross-sectional Densities. In Figure 1 we depict the estimated densities for

1992:Q1, 2010:Q1, and 2019:Q4, and overlay histograms. Two observations stand out: first,

the density estimator smooths out some of the bumps in the histograms. An increase in

K could capture some of these bumps, but would also increase the dimensionality of the

VAR and in particular the number of regressors α̂t−j. The model selection criterion used

to determine (K,λ, p) jointly trades of fit against model complexity. Second, there is a

pronounced spike in the right tail of the histograms which is caused by top coding. Our

estimator uses the tails of the density p(K)(x1:N,t|αt) to distribute the earnings at the top

coding level.

IRFs of Aggregate Variables. IRFs of the aggregate variables obtained from the fVAR

are depicted in Figure 2. Upon impact of the shock, labor productivity rises by 15 basis

points and then slowly decays to about 7 basis points after 10 years. Meanwhile per capita

GDP rises by 50 basis points in the short run and about 30 basis points in the long run.

Average cross-sectional earnings in our sample rise by about 10 basis points, but with a

delay of 10 quarters. Finally, the unemployment rate falls by 10 basis points. As a basis of
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Figure 3: IRF of Percentiles and Inequality Statistics
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Notes: The solid lines represent posterior mean (pointwise) responses and the dashed lines delimit 90%
credible intervals. x-axis corresponds to time horizon.

comparison (not shown in the figures) we also estimated a VAR based on Υt only, without

the estimated sieve coefficients, including either the unemployment rate or the transition

probabilities Π̂jk,t in the vector of Υt. The resulting IRFs are very similar to the ones

depicted in Figure 2.

IRFs of Cross-sectional Distribution: Percentiles and Inequality Statistics. The

computation of the cross-sectional density IRFs follows the description in Section 3.4. From

the sequence of baseline densities p0h(·) and pshh (·), h = 1, . . . , H, we can compute, for in-

stance, percentiles and inequality measures. These can be computed exclusively based on

the continuous densities normalized to one, or by including a pointmass at zero for the unem-

ployed, normalizing the continuous part to one minus the unemployment rate. The results

are depicted in Figure 3. We applied a change of variables to undo the inverse hyperbolic

sine transformation.

The panels in the top row of the figure show responses of percentiles that are computed

with a pointmass at zero equal to the unemployment rate. Because the productivity shock

reduces unemployment, more individuals have positive earnings. At the posterior median

there is a slight increase at the 10th percentile. The earnings increase is, however, much more

pronounced at the 90th percentile. Thus, in relative terms, individuals in “high” paying jobs

benefit more and the 90-10 ratio rises. This result for the German data differs from the result

obtained for U.S. data in CCS. In the U.S. earnings inequality in the Current Population
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Survey (CPS) data is countercyclical, with individuals at the bottom end of the earnings

distribution benefiting more from a technology shock.

If the pointmass at zero is excluded then we are capturing the earnings distribution

conditional on being employed. The drop at the 10th percentile (relative to average earnings)

could be the result of a rigid labor market for low-skilled individuals and slowly adjusting

wages. Conditional on working, the 90-10 ratio response more strongly, featuring a more

pronounced increase in inequality.

7.3 Results from the csuVAR

csu Parameter Estimates. The posterior sampler generates draws from the joint posterior

distribution of (γ1:N , σ
2
1:N , θcsu, ξ)|(Υ1:T ,D1:N,1:T ).

7 The presentation of the estimation results

proceeds in three steps. First, we discuss the posterior distribution of the homogeneous

parameters θcsu. Second, we consider the posterior estimates of ξ, which characterizes the

CRE distribution; see (23). Let ξ̂ be the posterior mean estimate of ξ. Much of the discussion

will focus on p(γi, σ
2
i |xit, ξ̂) which can be interpreted as an implicit estimate of the CRE

distribution. Third, we examine the posterior estimates γ̂i and σ̂2
i of the heterogeneous

parameters.

Priors and posteriors for the homogeneous parameters θcsu are provided in Table 1. The

autoregressive parameter ρ for the earnings dynamics equation is estimated to be 0.75.

The remaining estimates characterize the distribution of earnings conditional on having

been unemployed (UE transitions) or not in the sample (OE transitions), respectively. The

distribution of earnings under the UE transitions seems to be largely unaffected by aggregate

productivity and GDP growth, with posterior mean estimates of 0.01 and -0.001, respectively.

The coefficient estimates for the OE transitions are larger, most notably, the coefficient on

productivity growth is 0.15.

To put these numbers into perspective it is important to understand the scale of xit.

Recall that xit is the hyperbolic inverse sine transformation of the ratio of individual earnings

to average earnings. Suppose that the earnings of unit i equal the cross-sectional average

(xit = 0.88) and its γi coefficient for productivity growth (in %) is equal to 0.1. Then a

one-percent increase in productivity growth would raise its earnings ratio from 1.0 to 1.14.

7The estimation results reported in this section are preliminary and based on a short-cut to the full

Bayesian estimation described in Section 4.
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Table 1: Homogeneous Parameters

Prior Posterior

Para. Regressor Mean 90% Intv. Mean 90% Intv.

ρ xit−1 0.75

γUE const. 0.40

Prod. Growth [%] 0.01

GDP Growth [%] -.001

σ2
UE 0.272

γOE const. 0.35

Prod. Growth [%] 0.15

GDP Growth [%] -0.03

σ2
OE 0.312

The estimated standard deviations σUE and σOE are large: 0.27 and 0.31, respectively.

Thus, there is a large amount of unexplained cross-sectional variation in the earnings of those

who enter unemployment. In fact, the R2s in pooled (across i and t) regressions for the UE

and OE samples, respectively, are very low.

The estimation results for the hyperparameters ξ are summarized in Table 2. Columns 3

and 4 contain the prior mean and a 90% credible interval for ξ, and Columns 5 and 6 the

posterior point and interval estimates. To interpret the estimates, we focus on how they

shape the CRE distribution through p(γi, σ
2
i |xit, ξ̂). The positive estimate of γ

s
implies that

units with high initial earnings tend to also have higher earnings in the long-run. The

implicit prior for the effect of productivity growth on unit-level earnings is negative (with a

mean of -0.016) and it is slightly positive (with a mean of .004) for GDP growth. To capture

the effect of aggregate shocks on the distribution of earnings, it is important to allow for

heterogeneity in the γi coefficients. This heterogeneity is controlled by the variance of the

CRE distribution V γ. Focusing on the coefficient on productivity growth, setting λ = 0.0025,

and converting variances into standard deviations, the estimated CRE standard deviation of

the productivity growth coefficient is 0.049.

At last, we show scatter plots of posterior mean estimates of γ̂i and σ̂
2
i in Figure 4. Each

point in the scatter corresponds to a particular unit i. The y axis in each of the graphs is the
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Table 2: Hyperparameters

Prior Posterior

Para. Regressor Mean 90% Intv. Mean 90% Intv.

γ
0

const. 0.08

Prod. Growth [%] -.016

GDP Growth [%] 0.04

γ
s

const. 0.11

diag(V γ) const. 0.21

Prod. Growth [%] 6 · 10−6/λ

GDP Growth [%] 2 · 10−7/λ

ν 5

s2 5 · 0.182

Figure 4: Scatterplots of Posterior Mean Estimates (γ̂i, σ̂
2
i )

posterior mean of the intercept. The x-axis represents the posterior mean of the productivity

growth coefficient, the GDP growth coefficient, and the variance estimate σ̂2
i . Overall, there

is a substantial amount of dispersion in the unit-specific coefficient estimates. The posterior

mean estimates of the intercept range from approximately -0.1 to 1.0 (abstracting from some

outliers), the estimates of the unit-specific productivity growth coefficient from -0.06 to 0.05,

and productivity growth from -0.01 to 0.01.

IRFs of Cross-sectional Density. We now turn to the implied response of the cross-

sectional density of earnings. The computation of the IRF is described in Section 5.4 and

results for the response in period h = 4 are plotted in Figure 5. The top left panel shows
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Figure 5: Impulse Response of Cross-sectional Densities, h = 4
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the cross-sectional density with a technology shock in period h = 1, whereas the top left

panel shows the baseline cross-sectional distribution in period 2010Q1. The two densities

look virtually indistinguishable, but the bottom left panel shows the differential obtained

from the csuVAR. For comparison, we plot in the bottom right panel the density differential

obtained from the fVAR analysis. The two density differentials are qualitatively similar, but

quantitatively different. The distributional effect obtained from the csuVAR analysis is more

muted.

7.4 Connection to Panel Local Projections

Many empirical studies, in particular those based on administrative data sets, use a form of

panel local projections to study the effect of aggregate shocks on micro-level outcomes. Local

projections (LPs) were initially proposed as an alternative to structural VARs to study the

effects of shocks on aggregate outcomes; see Jorda (2005). The basic idea is that the vector

time series has an infinite-order linear process (Wold) representation and the coefficient

matrices can be directly estimated by multi-step regressions. In the past decade structural
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VAR identification shifted to the use of observable shocks or shock instruments. In a local

projection framework this amounts to projecting time t + h observables onto a time t + 1

shock measure and some additional control variables. Suppose that the productivity shock

ϵ1t is observed. Then a typical panel LP would take the form

xit+h = αi + βiϵ1t+1 + ψxit + δ′iYt + (additional controls) + ωit+h (48)

and βi would be interpreted as the effect of the aggregate shock ϵ1t on unit-level earnings in

period t + h. The coefficient ψ captures the effect of current unit-level earnings on future

earnings. In the logic of the csuVAR, the additional control variables should also include

ℓt(·), because the cross-sectional log density affects future Υts and future Υts, in turn, affect

unit-level earnings.

The effect of the aggregate shock ϵ1t on the cross-sectional distribution of earnings de-

pends on the distribution of βi. If the coefficients were homogeneous, then the distribution

of xit would simply shift. However, in general we expected the βis to be heterogeneous and

their values could be correlated with xit. A popular assumption in the literature is that of

observed group heterogeneity, i.e.,

βi = bg(i), g(i) ∈ G, G = {1, 2, 3, . . . , ng}. (49)

This implies that the function g(i) is known and the coefficients bg can be estimated by pool-

ing observations from units that belong to the same group. While the coefficient estimates

b̂g measure how members of group g respond to aggregate shocks, it requires additional work

to convert the estimates into a response of the cross-sectional distribution. This requires

knowledge about the dependence between bg(i) and xit and the response can be obtained by

evaluating (48) for each i under a baseline scenario ϵ1t = 0 and a shocked scenario ϵ1t = 1.

While the panel local projection calculation appear to be easier to implement than the esti-

mation of the csuVAR, there is a real danger that the assumed group structure misses a lot

of the cross-sectional heterogeneity.

8 Conclusion

We started out from distinct but related questions: (i) what is the effect of an aggregate

shock on the cross-sectional distribution of xit? (ii) How does a particular cross-sectional

unit (household, firm, etc.) or group of units respond to an aggregate shock? Question (i)
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can be answered with repeated cross-sections whereas an answer to Question (ii) typically

requires panel data. The two questions are connected, because if Question (ii) is answered for

all households, then Question (i) is answered as well. We use a random sample of a German

administrative earnings data to estimate an fVAR that tracks cross-sectional distributions

and a csuVAR that tracks cross-sectional units. Both models include a vector autoregressive

law of motion for a vector of macroeconomic aggregates. While the fVAR is based on previous

research, in particular CCS, the csuVAR is new. It expands existing panel data models by

letting aggregate variables affect micro-level outcomes and the cross-sectional distribution

feed back into the aggregate block of the model.

Both modeling approaches have advantages and disadvantages. The fVAR approach has a

weaker data requirement because repeated cross sections suffice for the estimation. Moreover,

unit-level behavior and heterogeneity does not need to be explicitly modeled. At the unit-

level the time-series xit can be highly nonlinear, e.g., significant earnings changes might be

restricted to promotions, job-to-job transitions, or transitions in and out of unemployment.

The cross-sectional distribution, on the other hand, is not as sensitive to these nonlinearities,

because it stays unchanged if two units trade places in the xit distribution. The main

disadvantage of the fVAR modeling approach is that it is not designed to track specific units

and hence cannot answer Question (ii) above.

The key advantage of the csuVAR is its ability to track unit-level behavior. However,

the costs are substantial: one needs panel data to estimate the model and it is challenging

to specify unit-level laws of motion, which may require nonlinear and non-Gaussian features.

Moreover, coefficient heterogeneity needs to be carefully modeled. We contrasted both ap-

proaches in an application in which we examined the effect of productivity shocks on the

cross-sectional distribution of earnings.

In practice, researchers are limited by the availability of data sets. Insights from this

paper may also be useful for combining different types of data sets and conducting analyses

with mixed-frequency data.
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