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Abstract

Which role did fiscal policy play during the Great Inflation? We estimate a DSGE

model with three distinct monetary/fiscal policy regimes using a Sequential Monte

Carlo (SMC) algorithm to evaluate the posterior distribution. In contrast to stan-

dard sampling algorithms, SMC enables us to determine the monetary/fiscal policy

mix by sampling simultaneously from all regions of the parameter space, which makes

comparing model fit across regimes unnecessary. A differentiated perspective results:

pre-Volcker macroeconomic dynamics were similarly driven by passive monetary/pas-

sive fiscal policy and fiscal dominance. Fiscal policy actions, especially government

spending, were critical in the pre-Volcker inflation build-up.
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1 Introduction

With the inevitable COVID-19 fiscal responses, the global sovereign debt level is set to rise

to a record high. The need to prevent situations in which debt becomes unsustainable puts

surprise inflation on the table as a policy option to reduce nominal debt. Not surprisingly,

the almost entirely deficit financed $ 1.9 trillion of federal government spending, included in

U.S. President Biden’s American Rescue Plan Act, have sparked a controversial discussion

among economists on the looming inflation risk (Blanchard, 2021; Summers, 2021). The fiscal

theory of the price level (FTPL) puts the current mix of monetary and fiscal policies at center

stage in this debate: in a situation in which the fiscal authority is not committed to stabilize

debt by managing the primary surplus and the monetary authority acts accommodatively,

increasing government spending could deanchor inflation expectations (Leeper et al., 2017).1

For one historical episode, which is very instructive for all these aspects, the debate about

the monetary-fiscal policy mix is still unsettled. This episode is usually referred to as the

Great Inflation of the 1960s and 1970s in the U.S. In our study, we revisit the role of fiscal

policy during the Great Inflation to obtain insights for potential policy options in the current

economic crisis. We estimate a DSGE model with three distinct monetary/fiscal policy

regimes using a Sequential Monte Carlo algorithm (SMC) - a posterior sampler established

in the DSGE literature by Herbst and Schorfheide (2014, 2015). The SMC is able to deal

with multimodal posterior surfaces and enables us to estimate a fixed-regime DSGE model

with distinct monetary/fiscal policy regimes over its entire parameter space. We find that

the macroeconomic dynamics during the pre-Volcker period were almost similarly driven by

a passive monetary/passive fiscal policy regime and fiscal dominance. This new result calls

for a more differentiated perspective on the causes of the Great Inflation. Not only did non-

1The insight that monetary and fiscal policy are not independent from each other and must be studied
jointly has a long tradition in modern macroeconomics, going back to Sargent and Wallace (1981), Leeper
(1991), Sims (1994), Woodford (1996), and Cochrane (2001). Cochrane (2011), Davig and Leeper (2011) and
Bianchi and Melosi (2017) study the interaction of monetary and fiscal policy in a recession. Ascari et al.
(2020) call for a new taxonomy for studying the interactions of monetary and fiscal policy. Bianchi et al.
(2020) propose a concrete policy that involves coordination between the monetary and fiscal authorities in
response to the COVID-19 pandemic.
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policy shocks create inflationary pressure, but fiscal policy actions, in particular government

spending, were also an equally important driver of U.S. inflation in the 1960s and 1970s.

Our findings contribute to the still open role of U.S. fiscal policy during the Great Infla-

tion. The literature largely agrees that monetary policy in the pre-Volcker period was passive

and, hence, was not able to stabilize prices.2 However, concerning the stance of fiscal policy,

the evidence is mixed. Bhattarai et al. (2016), who apply random walk Metropolis-Hastings

sampling (RWMH) to estimate a fixed-regime DSGE model with monetary and fiscal policy

interactions, find that the fiscal authority was passive and strongly increased taxes to debt.3

On the contrary, studies relying on regime-switching DSGE models like Davig and Leeper

(2006), Bianchi (2012), Bianchi and Ilut (2017), and Chen et al. (2019) mainly attribute the

leading role in the pre-Volcker period to the fiscal authority.

By re-estimating the fixed-regime model of Bhattarai et al. (2016) with the more suitable

SMC posterior sampler, we can finally dissolve the persisting dissonance between these two

model classes. As shown by Herbst and Schorfheide (2014, 2015) and Cai et al. (2020), the

SMC sampler outperforms the RWMH in the presence of multimodal posteriors. This result

is particularly relevant for DSGE models with monetary-fiscal policy interactions that ex-

hibit discontinuous likelihood functions around the policy regimes.4 While Bhattarai et al.

(2016) still estimated each regime separately by RWMH and determined the prevailing pol-

2Clarida et al. (2000) and Mavroeidis (2010) estimate monetary policy reaction functions. Lubik and
Schorfheide (2004) consider a monetary DSGE model that allows for indeterminacy, Boivin and Giannoni
(2006) combine evidence from vector autoregressive and general equilibrium analysis, while Coibion and
Gorodnichenko (2011), including the trend level of inflation in their study, arrive at a similar conclusion.
Bilbiie and Straub (2013) rationalize the Fed’s passive policy response in the pre-Volcker period with limited
asset market participation and find it was consistent with equilibrium determinacy. Ascari et al. (2019) also
find evidence for passive monetary policy in the pre-Volcker period. However, their analysis explains the
Great Inflation with temporary unstable inflation dynamics due to expectations, which were independent
from monetary policy behavior.

3In an earlier study, Traum and Yang (2011) find no evidence for an active U.S. fiscal authority in the
pre-Volcker period. Tan and Walker (2015) point out potential for observational equivalence across active
and passive fiscal policy in a cashless version of the model of Leeper (1991).

4For instance, due to discontinuities in the posterior at the boundary of the policy regimes, transitions
of the RWMH between areas of the parameter space with similar fit can be impeded. Ascari et al. (2019),
Hirose et al. (2020), and Haque et al. (2021) are applications of the SMC algorithm for estimating a DSGE
model with multiple regimes. However, all three studies examine exclusively the role of monetary policy and
omit the fiscal side from the model.
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icy mix by model comparison, we can execute the same estimation in one step using SMC.5

Estimating the model over its continuous parameter space allows us to determine the pos-

terior probability of each policy regime directly and to draw a more nuanced conclusion:

in line with Bhattarai et al. (2016), we find that equilibrium indeterminacy indeed played

an important role pre-Volcker. However, echoing the conclusion of regime-switching DSGE

models, regime F, at 37 % posterior probability, mattered as well. Hence, putting all weight

on indeterminacy is misleading for understanding the mechanism behind the Great Inflation.

The remainder of this paper is as follows. Section 2 describes the DSGE model with

monetary-fiscal policy interactions. In Section 3, we outline our empirical approach and

provide estimation results to determine the monetary-fiscal policy mix in the pre-Volcker

period. In light of our findings, in Section 4, we examine what caused the build-up of U.S.

inflation in the 1960s and 1970s. The final section concludes the study.

2 A DSGE model with monetary-fiscal policy interac-

tions

In this section, we outline the fixed-regime DSGE model with monetary-fiscal policy interac-

tions of Bhattarai et al. (2016), our reference model, characterize its distinct monetary-fiscal

policy regimes, and present the solution method for the model.

2.1 Model description

We use the fixed-regime DSGE model set up in Bhattarai et al. (2016). It features a complete

description of fiscal policy, a time-varying inflation and debt-to-output target, partial dy-

namic price indexation, and external habit formation in consumption. Here, we only present

5Bianchi and Nicolò (2019) propose a novel solution method that is particularly relevant for models with
an unknown degree of indeterminacy and/or unknown boundaries of the determinacy region. For inference,
they suggest the SMC algorithm, as used in this study, or, as an alternative, a hybrid Metropolis-Hastings
algorithm.
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the first-order approximations of the model equations that determine equilibrium dynamics.

For a detailed analysis of the model’s characteristics, we refer the reader to the original

study.

Consumption behavior of households is given by the consumption Euler equation:

Ĉt =
ā

ā+ η
EtĈt+1 +

η

ā+ η
Ĉt−1 −

(
ā− η
ā+ η

)(
R̂t − Etπ̂t+1

)
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ā

ā+ η
Etât+1−

− η
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(
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)
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(1)

where Ĉt is aggregate consumption, R̂t is the interest rate on government bonds, ât is the

growth rate of technology, π̂t is the inflation rate, and d̂t stands for preferences.6 The param-

eters ā and η denote the steady-state value of at and external habit formation, respectively.

The New Keynesian Phillips curve is denoted by

π̂t =
β

1 + γβ
Etπ̂t+1 +

γ

1 + γβ
π̂t−1 + κ

[(
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ā− η
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ā− η
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(
η
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)
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]
+ ût,

(2)

where Ŷt is aggregate output, ĝt represents the government spending-to-output ratio, and ût

can be interpreted as cost-push shock. The parameters β, γ, ϕ, and ḡ are, respectively, the

discount factor, the degree of price indexation, the inverse of the Frisch elasticity of labor

supply, and the steady-state value of government spending. Furthermore, κ := (1−αβ)(1−α)

α(1+ϕθ̄)(1+γβ)
.

α stands for the degree of price rigidity in the economy and θ̄ for the steady-state value of

the elasticity of substitution between intermediate goods.

Monetary policy is characterized by the following rule:

6We define the log-linear deviation of a detrended variable from its corresponding steady state as X̂t =
lnXt − lnX̄. Only the fiscal variables b̂t = bt − b̄, ĝt = gt − ḡ, τ̂t = τt − τ̄ , and ŝt = st − s̄ are normalized by
output and linearized around their steady states.
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R̂t = ρRR̂t−1 + (1− ρR)
[
φπ(π̂t − π̂∗t ) + φY (Ŷt − Ŷ ∗t )

]
+ εR,t. (3)

π̂∗t is the inflation target and Ŷ ∗t is potential output. The idiosyncratic monetary policy

shock εR,t is assumed to evolve as i.i.d. N(0, σ2
R). The parameters ρR, φπ, and φY represent,

respectively, interest rate smoothing, responses to deviations of inflation from its target, and

responses to deviations of output from its natural level.

The fiscal authority sets lump-sum taxation by a rule:

τ̂t = ρτ τ̂t−1 + (1− ρτ )
[
ψb(b̂t−1 − b̂∗t−1) + ψY (Ŷt − Ŷ ∗t )

]
+ ετ,t. (4)

τ̂t stands for the tax-revenue-to-output ratio, b̂t is the debt-to-output ratio, and b̂∗t is the

debt-to-output ratio target. The non-systematic tax policy shock ετ,t is assumed to evolve

as i.i.d. N(0, σ2
τ ). The tax policy rule features tax smoothing (ρτ ), systematic reactions of

tax revenues to deviations of lagged debt from its target (ψb), and to deviations of output

from natural output (ψY ).

The government spending rule is modeled as

ĝt = ρgĝt−1 − (1− ρg)χY
(
Ŷt−1 − Ŷ ∗t−1

)
+ εg,t. (5)

ĝt stands for the government spending-to-output ratio. The exogenous shock to government

spending εg,t is assumed to follow an i.i.d.-process with N(0, σ2
g). ρg represents smoothing in

government purchases and χY is the response of government spending to the lagged output

gap. Under the assumption of flexible prices, the natural level of government spending is:

ĝ∗t = ρgĝ
∗
t−1 + εg,t. (6)

The government budget constraint is given by:
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b̂t =
1

β
b̂t−1 +

b̄

β

(
R̂t−1 − π̂t − Ŷt + Ŷt−1 − ât

)
+ ĝt − τ̂t + ŝt. (7)

ŝt is the ratio of government transfers to output and the parameter b̄ is the steady-state

value of the debt-to-output ratio.

The aggregate resource constraint is given by:

Ŷt = Ĉt +
1

1− ḡ
ĝt. (8)

The natural level of output is:

Ŷ ∗t =
η

ϕ (ā− η) + ā
Ŷ ∗t−1 +

ā

[ϕ (ā− η) + ā] (1− ḡ)
ĝ∗t −

η

[ϕ (ā− η) + ā] (1− ḡ)
ĝ∗t−1−

− η

ϕ (ā− η) + ā
ât.

(9)

Finally, six additional exogenous shocks drive economic fluctuations. These are all as-

sumed to evolve according to univariate AR(1) processes.

Preferences evolve as

d̂t = ρdd̂t−1 + εd,t with εd,t ∼ i.i.d. N(0, σ2
d). (10)

Technology evolves as

ât = ρaât−1 + εa,t with εa,t ∼ i.i.d. N(0, σ2
a). (11)

Markup shocks are assumed to follow

ût = ρuût−1 + εu,t with εu,t ∼ i.i.d. N(0, σ2
u). (12)
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Government transfers are given by

ŝt = ρsŝt−1 + εs,t with εs,t ∼ i.i.d. N(0, σ2
s). (13)

The inflation target evolves as

π̂∗t = ρππ̂
∗
t−1 + επ,t with επ,t ∼ i.i.d. N(0, σ2

π). (14)

The debt-to-output ratio target follows

b̂∗t = ρbb̂
∗
t−1 + εb,t with εb,t ∼ i.i.d. N(0, σ2

b ). (15)

2.2 Model solution under different policy regimes

A unique equilibrium of the economy arises if either monetary policy is active while fiscal

policy is passive (regime M or AMPF) or monetary policy is passive while fiscal policy is

active (regime F or PMAF). If both monetary and fiscal policy are passive, multiple equilibria

exist (PMPF). No stationary equilibrium exists if both authorities act actively (AMAF). The

boundaries of the distinct policy regimes can be characterized analytically in Bhattarai et al.

(2016)’s model. In particular, monetary policy is active if

φπ > 1− φY

(
1− β̃
κ̃

)
, (16)

where β̃ = γ+β
1+γβ

and κ̃ = (1−αβ)(1−α)

α(1+ϕθ̄)(1+γβ)

(
1 + ϕ+ χY

1−ḡ

)
, while fiscal policy is active if

ψb <
1

β
− 1. (17)
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We collect the parameters of the loglinearized model in the vector ϑ with domain Θ and

solve the system of equations for its state-space representation.7 Under determinacy (regime

F, regime M), we employ the solution algorithm for linear rational expectations models of

Sims (2002), which expresses the model solution as

zt = Γ∗1(ϑ)zt−1 + Ψ∗(ϑ)εt, (18)

where zt is a vector of state variables, εt is a vector of exogenous variables, while both Γ∗1

and Ψ∗ are coefficient matrices that depend on the model parameters collected in the vector

ϑ. Under indeterminacy, we apply the generalization of this procedure suggested by Lubik

and Schorfheide (2003, 2004):

zt = Γ∗1(ϑ)zt−1 +
[
Γ∗0,ε(ϑ) + Γ∗0,ζ(ϑ)M̃

]
εt + Γ∗0,ζ(ϑ)Mζζt. (19)

Under indeterminacy, the transmission of fundamental shocks εt is no longer uniquely de-

termined as it depends not only on the coefficient matrix Γ∗0,ε, but also on the matrices M̃

and Γ∗0,ζ .
8 Second, an exogenous sunspot shock ζt, unrelated to the fundamental shocks

εt, potentially affects the dynamics of the model variables zt. This effect depends on the

coefficient matrices Γ∗0,ζ and Mζ .

3 Empirical Results

In this section, we present the empirical model results. In a first step, we describe the prior

distributions and the dataset and illustrate the procedure for posterior sampling we choose

that makes our study distinct. In a second step, we summarize the estimation results and

7More details on the implementation of the model solution are given in Appendix A.1.
8In accordance with Lubik and Schorfheide (2004), we replace M̃ with M̃ = M∗(ϑ)+M to prevent that the

transmission of fundamental shocks changes drastically when the boundary between the determinacy regimes
and the indeterminacy regime is crossed. We choose M∗(ϑ) such that the impulse responses ∂zt/∂ε

′
t(ϑ,M)

become continuous on the boundary and estimate the vector M . Appendix A.2 describes the approach in
more detail.
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Table 1: Prior distributions of monetary and fiscal policy parameters

Parameter Range Distribution Mean SD 90 percent int.

φπ, active / passive monetary policy R
+ N 0.8 0.6 [0.14, 1.84]

ψb, active / passive fiscal policy R N 0 0.1 [−0.16, 0.16]

determine the monetary-fiscal policy mix in the pre-Volcker period.

3.1 Estimation strategy

Prior distributions and calibrated parameters

In line with Bhattarai et al. (2016), we fix a few model parameters. We calibrate the inverse

of the Frisch elasticity of labor supply to ϕ = 1 and the steady-state value of the elasticity

of substitution between goods to θ̄ = 8, since these cannot be separately identified from

the Calvo parameter α. We also fix the parameters measuring the persistence of the time-

varying policy targets to ρπ = ρb = 0.995. Our prior distributions extend over a broad range

of parameter values.9 As we initialize the SMC algorithm from the prior, we used prior

predictive analysis to carefully tailor a prior that results in realistic model implications, but

nevertheless remains agnostic about the prevailing policy regime.10 In the following, we

discuss only the key parameters of our analysis.

Specifically, the policy parameters in the monetary and fiscal policy rule, φπ and ψb play

a central role in our analysis as they determine the policy regime. Table 1 summarizes the

details. For φπ, we choose a Normal distribution restricted to the positive domain with an

implied 90 % probability interval from 0.14 to 1.84, while the interval extends from -0.16 to

0.16 for ψb. Our choice is motivated by the consideration to construct prior distributions that

yield more or less equal probabilities for regime F and the PMPF regime. In particular, as we

9Table 4 in Appendix B.1 specifies the prior distributions of all model parameters.
10In Appendix B.2 we show results from the prior predictive analysis. In particular, we take 20,000 draws

from the prior, simulate the model’s observables and plot these simulated time series against the actual data
from 1960:Q1 to 1979:Q2 that we use for estimating the model.
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initialize the SMC algorithm from the prior, we do not want to impose artificially a certain

policy regime before confronting the model with the data. The implied prior probabilities of

the policy regimes presented in Table 2 support our choice. Regime F and the PMPF regime

receive almost identical support.

Table 2: Prior probability of pre-Volcker policy regimes

AMPF PMAF PMPF

Probability 25.64 37.88 36.48

Note: The prior probabilities of the policy regimes are ob-

tained from a prior predictive analysis. We drew ϑ 20,000

times from the priors specified in Table 4, solved the model

with each draw and computed the shares of each policy

regime.

A second group of parameters we want to highlight are those necessary to characterize

the indeterminacy model solution. For the parameters in the vector M , representing agents’

self-fulfilling beliefs, we choose, as Bhattarai et al. (2016), priors centered around zero in

order to let the data decide if and how indeterminacy changes the propagation mechanism

of the fundamental shocks.

Data

We use the dataset of Bhattarai et al. (2016).11 We fit the loglinearized DSGE model to

six quarterly U.S. time series and estimate the model for the pre-Volcker sample 1960:Q1

to 1979:Q2. The list of observables includes output, inflation, nominal interest rates, the

tax-revenue-to-output ratio, the market value of the government debt-to-output ratio, and

the government spending-to-output ratio.

11The dataset is downloadable from the supplemental material of their study https://dataverse.
harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/OHUWKM. More details on the
data and the corresponding measurement equations are given in Appendix C.

11

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/OHUWKM
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/OHUWKM


Sequential Monte Carlo posterior sampling

Posterior inference in DSGE models relies on sampling techniques as the moments of the

posterior cannot be characterized in closed forms. For our application, we choose the SMC

algorithm introduced to the DSGE literature by Creal (2007) then further enhanced and

theoretically justified by Herbst and Schorfheide (2014, 2015).12 As shown by Herbst and

Schorfheide (2014, 2015) and Cai et al. (2020), the SMC algorithm outperforms the workhorse

RWMH sampler in cases of multimodal posteriors, an outcome of extreme relevance in the

case of the DSGE model with monetary-fiscal policy interactions with a discontinuous likeli-

hood function. Due to this feature, neither are we obliged to estimate the model separately,

nor must we compare model fit across regimes. Rather, we let the SMC algorithm explore the

entire parameter space such that the probability of each policy regime is directly determined

by the data.13

12Chopin (2002), Del Moral et al. (2006), and Creal (2012), among others, provide further details on SMC
algorithms. Cai et al. (2020) advance the tuning of the algorithm in the context of DSGE model estimation.

13Appendix D includes a more detailed description of the SMC algorithm and our choice of tuning param-
eters.
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3.2 The monetary-fiscal policy mix in the pre-Volcker period

Posterior estimates
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Figure 1: Prior and posterior densities of the policy parameters. The blue bold line depicts
the posterior density, the black line the prior density.

Figure 1 shows prior and posterior density plots of the estimated policy parameters.14 The

posterior densities of φπ and ψb display pronounced bimodalities around the policy regimes.

For φπ, the mode to the left of one corresponds to a passive monetary authority, while the

mode on the right corresponds to an active central bank. The boundary of fiscal policy

(ψb) lies around zero. The mode to the left of the boundary corresponds to an active fiscal

authority, the mode to the right to a passive fiscal authority. It is also noticeable that the

probability mass below each mode is unequally distributed.

14Appendix E.1 shows posterior estimates from an estimation in which we restrict the parameter space
and apply SMC sampling to estimate each policy regime sequentially. The purpose of this exercise is to
show (i) that the SMC sampler is able to replicate the RWMH estimation results of Bhattarai et al. (2016),
our reference study, that the PMPF regime was the dominant regime pre-Volcker, and (ii) that our prior
specification does not affect the probability of policy regimes in the posterior. Appendix E.2 contains the
density plots of the remaining parameters from the unrestricted estimation as well as tables with estimated
means, standard deviations, and credible bands for all parameters. Appendix E.3 contains posterior density
plots of the unrestricted estimation conditional on regime F and the PMPF regime.
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To shed more light on the estimated monetary-fiscal policy mix, we present the posterior

probabilities of the policy regimes in the pre-Volcker period (Table 3). In line with Bhattarai

et al. (2016), we find that the regime with the highest posterior probability in the pre-Volcker

period is, at 43.54 %, the PMPF regime. However, in contrast to their analysis, we find that

with 36.81 % probability, regime F scores only slightly worse. In line with the literature,

regime M receives the least support from the data, at 19.65 %.15

Table 3: Posterior probability of pre-Volcker policy regimes

AMPF PMAF PMPF

Probability 19.65 36.81 43.54

Note: To obtain the posterior probabilities, we solved the

model with each of the 20,000 particles and computed the

shares of each policy regime over 50 independent runs of

the SMC algorithm.

Discussion

Although our estimation attributes indeterminacy a role in the pre-Volcker period, differently

to Bhattarai et al. (2016), we draw a more differentiated conclusion and argue in the following

that regime F also matters for the macroeconomic dynamics in the pre-Volcker period. First,

in our analysis, regime F receives, at 36.81 %, considerable probability that is only seven

percentage points less than the, on average, dominant PMPF regime. Due to this significant

empirical support, regime F should not simply be neglected. Second, our results complement

a range of studies that already convincingly discuss quantitative or narrative evidence for

a leading fiscal authority during particular periods in the pre-Volcker era. Sims (2011), for

instance, refers to the emerging primary deficits in the U.S. related to President Ford’s tax

15The finding that monetary policy in the pre-Volcker period was mainly passive, is also widely established
in the literature. Therefore, in the following, we focus our discussion entirely on the still open role of fiscal
policy and look exclusively on regime F and the PMPF regime.
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cuts and rebates in 1975. Bianchi and Ilut (2017), in a regime-switching DSGE model, even

provide empirical evidence for fiscal dominance in the U.S. during the 1960s and 1970s,

outlining the fiscal expansion due to the Vietnam War and Lyndon B. Johnson’s Great

Society reforms.16 Our findings support their view that an active U.S. fiscal policy played a

substantial role in the build-up of pre-Volcker inflation.

Our chosen SMC approach’s merit is that it can create new perspectives in a fixed-

regime model environment. As we can estimate the model over its entire parameter space,

we remain agnostic and strictly let the data determine each policy regime’s probability. In

contrast, in our application, RWMH sampling works only for a subset of the parameter

space and, hence, would force us to take a zero-one decision. As the model comparison

results from the restricted estimation in Table 5 in Appendix E.1 show, we would conclude,

like Bhattarai et al. (2016), that only the PMPF regime was in place pre-Volcker. The other

policy regimes would not be considered. Instead, our analysis allows us to draw a more

nuanced conclusion: although the PMPF regime receives slightly more posterior probability

throughout the 1960:Q1 to 1979:Q2 sample, regime F also mattered.

4 Revisiting the Great Inflation

The estimation in the previous section shows that the macroeconomic dynamics in the pre-

Volcker period are similarly driven by a passive monetary/passive fiscal policy regime and

fiscal dominance. In light of these results, we revisit one of the most pressing macroeconomic

questions of this episode, namely, what caused the Great Inflation. In a first step, we use our

findings to carry out a historical shock decomposition of pre-Volcker inflation. In a second

step, we conduct a counterfactual analysis to quantify the importance of fiscal policy actions

in the run up of inflation.

16Further references that provide evidence for fiscal dominance in the U.S. in the pre-Volcker period
include, among others, Davig and Leeper (2006), Bianchi (2012), and Chen et al. (2019). All these studies
employ regime-switching model frameworks.

15



4.1 Shock decomposition

We partition the draws from the posterior according to the corresponding policy regimes

and conduct the historical decomposition for the PMPF regime and regime F separately.

Figure 2 shows the results for the PMPF regime. In line with the findings in Bhattarai

et al. (2016), we find that, in the PMPF regime, pre-Volcker inflation was mainly driven by

non-policy shocks, in particular, preference, markup, and technology shocks. Importantly,

sunspot shocks played only a minor role in the pre-Volcker inflation build-up.17

Figure 2: Contribution of each shock to inflation in the PMPF regime. The bold black line
shows observed inflation. The historical decomposition is conducted at the posterior mean
of the PMPF regime.

In regime F, the picture looks different. Figure 3 summarizes the findings. Technology

and demand shocks played only a minor role in regime F. Instead, the mechanism of the

17The fact that sunspot shocks played no substantial role in the pre-Volcker inflation build-up is, for
instance, also confirmed in Nicolò (2018).
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FTPL is clearly present: fiscal actions, government spending in particular, lead to the build-

up of inflation.

Summarizing our analysis, we find empirical evidence for the two most widely acknowl-

edged explanations in the literature for the rising U.S. inflation in the pre-Volcker period.

First, fundamental non-policy shocks generated persistent inflationary pressure. Sunspot

disturbances played no substantial role. Second, fiscal actions, in particular government

spending, were an important driver of inflation.

Figure 3: Contribution of each shock to inflation in regime F. The bold black line shows
observed inflation. The historical decomposition is conducted at the posterior mean of regime
F.

4.2 Counterfactual analysis

To further elaborate the role of government spending for pre-Volcker inflation, we carry out

a counterfactual analysis. We set the contribution of government spending shocks in each

17



regime to zero and simulate inflation with the remaining shocks. Figure 4 shows the result.

In regime F, counterfactual inflation lies considerably below the observed time series. In the

PMPF regime, on the other hand, the difference between actual and counterfactual inflation

is almost negligible.
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-20
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Figure 4: Evolution of inflation (in percentage points) without government spending shock
in the PMPF regime and regime F. The counterfactual analysis is conducted at the posterior
mean of each policy regime.

We can exclude that the trend of pre-Volcker inflation in regime F and the PMPF regime

is due to the sheer size of the government spending shocks. Figure 5 shows that, pre-Volcker,

the smoothed government spending shocks of regime F and the PMPF regime are nearly

congruent.18 Hence, the differing evolution of inflation is induced by the regimes themselves.

18Appendix F shows plots of the remaining smoothed shocks for regime F and the PMPF regime, respec-
tively.
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Figure 5: Smoothed government spending shock for 1960:Q1 to 1979:Q2 for regime F and the
PMPF regime. The dotted line shows the shock computed at the posterior mean of regime
F. The solid line shows the shock computed at the posterior mean of the PMPF regime.

The results of the counterfactual analysis are instructive to evaluate policy measures that

effectively brought down pre-Volcker inflation. The Volcker action surely was one possible

way to go. By increasing interest rates drastically, the central bank credibly signaled that

it will take the lead role. Reagan complied and backed the monetary policy actions. As a

result, the monetary-fiscal policy mix switched to regime M. However, conditional on the

results in Figure 4, an alternative policy response crystallizes. Less consumption on the part

of the fiscal authority during the 1970s would have also reduced the government spending-

to-output ratio and, hence, countered the rising inflation.

Translating the experience of the Great Inflation to the ongoing economic disruption caused

by the coronavirus, we learn that monetary and fiscal policy must be determined and ana-

19



lyzed jointly when assessing the evolution of inflation.

5 Conclusion

Was fiscal policy a driver of U.S. inflation in the pre-Volcker period? Using an SMC algo-

rithm, we estimate a DSGE model with monetary-fiscal policy interactions over its entire

parameter space. Our empirical findings are able to reconcile two opposing strands in the lit-

erature. Similar to studies that rely on fixed-regime DSGE models, we find that the PMPF

regime receives highest posterior probability throughout the 1960:Q1 to 1979:Q2 sample.

However, in line with the regime-switching literature, we also find strong evidence that

regime F mattered in the pre-Volcker period. Our analysis attributes fiscal policy, especially

government spending, an essential role in the build-up of U.S. inflation. This new result

calls for a more differentiated perspective on the causes of the Great Inflation. Not only did

non-policy shocks create inflationary pressure, but fiscal policy actions were also an equally

important driver of U.S. inflation in the 1960s and 1970s.
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Nicolò, G. (2018). Monetary Policy, Expectations and Business Cycles in the U.S. Post-War

Period. Mimeo, University of California, Los Angeles.

Sargent, T. J. and Wallace, N. (1981). Some Unpleasant Monetarist Arithmetic. Quarterly

Review, 5(Fall).

Sims, C. A. (1994). A Simple Model for Study of the Determination of the Price Level and

the Interaction of Monetary and Fiscal Policy. Economic Theory, 4(3):381–99.

Sims, C. A. (2002). Solving Linear Rational Expectations Models. Computational Economics,

20(1-2):1–20.

Sims, C. A. (2011). Stepping on a Rake: The Role of Fiscal Policy in the Inflation of the

1970s. European Economic Review, 55(1):48–56.

24



Summers, L. H. (2021). The Inflation Risk is Real. https://www.larrysummers.com/

2021/05/24/the-inflation-risk-is-real/, Last accessed on 2021-03-06.

Tan, F. and Walker, T. B. (2015). Solving Generalized Multivariate Linear Rational Expec-

tations Models. Journal of Economic Dynamics and Control, 60:95–111.

Traum, N. and Yang, S.-C. S. (2011). Monetary and Fiscal Policy Interactions in the Post-

War U.S. European Economic Review, 55(1):140–164.

Woodford, M. (1996). Control of the Public Debt: A Requirement for Price Stability? NBER

Working Papers 5684, National Bureau of Economic Research.

25

https://www.larrysummers.com/2021/05/24/the-inflation-risk-is-real/
https://www.larrysummers.com/2021/05/24/the-inflation-risk-is-real/


Appendix A Model solution

Appendix A.1 Implementation of the model solution

The linear rational expectation form of the DSGE model presented in Section 2 is given by

Γ0(ϑ)zt = Γ1(ϑ)zt−1 + Ψ(ϑ)εt + Π(ϑ)ηt. (20)

z is the vector of state variables, the vector ε includes the exogenous variables, and η is a

vector of expectation errors. To apply the solution algorithm of Sims (2002), we define, for

a generic variable x̂t, the corresponding one-step-ahead rational expectations forecast error

as ηx,t = x̂t −Et−1[x̂t]. In our application, the vectors of the general model form are defined

as:

zt = [ĉt π̂t ât R̂t d̂t Ŷt ĝt ût π̂
∗
t Ŷ

∗
t τ̂t b̂t b̂

∗
t ŝt ĝ

∗
t ĉt−1 π̂t−1 ĝt−1 Ŷt−1]′,

εt = [εg,t εd,t εa,t εu,t εs,t εR,t ετ,t επ,t εb,t]
′, and

ηt = [ηc,t ηπ,t]
′.

Appendix A.2 Transmission mechanism around the regime bound-

aries

Equation 19 illustrates that indeterminacy changes the nature of the solution in two dimen-

sions. First, the transmission of fundamental shocks εt is no longer uniquely determined as it

additionally depends on the matrix M̃ . Second, an exogenous sunspot shock ζt, unrelated to

the fundamental shocks εt, potentially affects the dynamics of the model variables zt. Thus,

indeterminacy introduces additional parameters.

We denote the standard deviation of the sunspot shock as σζ and normalize as Lubik and

Schorfheide (2004) Mζ to unity. Also in accordance with Lubik and Schorfheide (2004), we
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replace M̃ with M̃ = M∗(ϑ) + M to prevent that the transmission of fundamental shocks

changes drastically when the boundary between the determinacy regimes and the indeter-

minacy regime is crossed. Around this boundary, small changes in ϑ should rather leave

the propagation mechanism of structural shocks unaffected. That is why we choose M∗(ϑ)

such that the impulse responses ∂zt/∂ε
′
t become continuous on the boundary. Vector M , in

contrast, which determines the relationship between fundamental shocks and forecast errors,

is estimated. It can be interpreted to capture agents’ self-fulfilling beliefs and consists of the

following entries: M =
[
Mgζ ,Mdζ ,Maζ ,Muζ ,Msζ ,MRζ ,Mτζ ,Mπζ ,Mbζ

]
. For the parameters

in M , we choose priors centered around zero and, thus, strictly let the data decide how

indeterminacy changes the transmission mechanism of structural shocks.

To compute the matrix M∗(ϑ) that guarantees continuous model dynamics on the bound-

ary, we proceed in several steps. First, we construct for every parameter vector ϑ ∈ ΘI

(indeterminacy) a reparametrized vector ϑ∗ = g∗(ϑ) that lies on the boundary between

the indeterminacy and the determinacy regimes. Then, M∗(ϑ) is chosen by a least-squares

criterion such that the impulse responses ∂zt
∂ε′t

(ϑ,M) conditional on ϑ resemble the impulse

responses conditional on the vector on the boundary ∂zt
∂ε′t

(g∗(ϑ)). However, the DSGE model,

with monetary-fiscal policy interactions presented in subsection 2, gives rise to two different

determinate solutions (regime F and regime M) that are generally characterized by different

transmission mechanisms. To deal with this ambiguity, we proceed as follows:

1. For every ϑ ∈ ΘI we construct a vector ϑM = gM(ϑ) that demarks the boundary

between regime M and the indeterminacy regime and a vector ϑF = gF (ϑ) that lies

on the boundary to regime F. The function gM(ϑ) is obtained by replacing φπ in the

vector ϑ with

φ̃π = 1− φY

(
1− β̃
κ̃

)
. (21)
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The function gF (ϑ) is obtained by replacing ψb in the vector ϑ with

ψ̃b =
1

β
− 1. (22)

2. We solve the model successively with the reparametrized vectors ϑM and ϑF and com-

pute

MM(ϑ) =
[
ΓM0,ζ(ϑ)′ΓM0,ζ(ϑ)

]−1
ΓM0,ζ(ϑ)′

[
ΓM0,ε(g

M(ϑ))− ΓM0,ε(ϑ)
]

, and (23)

MF (ϑ) =
[
ΓF0,ζ(ϑ)′ΓF0,ζ(ϑ)

]−1
ΓF0,ζ(ϑ)′

[
ΓF0,ε(g

F (ϑ))− ΓF0,ε(ϑ)
]

. (24)

3. To choose the M∗(ϑ) that minimizes the discrepancy between ∂zt
∂ε′t

(ϑ,M) and ∂zt
∂ε′t

(g∗(ϑ)),

we compute the distances to the respective boundaries as

DM =
[
ΓM0,ε(g

M(ϑ))− ΓM0,ε(ϑ)
]
− ΓM0,ζ(ϑ)MM(ϑ), and (25)

DF =
[
ΓF0,ε(g

F (ϑ))− ΓF0,ε(ϑ)
]
− ΓF0,ζ(ϑ)MF (ϑ). (26)

4. As, in our model, all fundamental shocks are assumed to be independent from each

other, we compute the Euclidean norm of each column in D∗, sum them up, and,

finally, choose the M∗(ϑ) that corresponds with19

min

[
9∑
j=1

||dMj ||2,
9∑
j=1

||dFj ||2

]
.

Here, we show plots to demonstrate that our approach delivers effectively continuous

impulse response functions on the boundary between policy regimes. We draw 20,000 times

from the prior distribution outlined in Section 3.1 and solve with each draw the model. If a

19For matrix D∗ = (d∗ij), its i-th row and j-th column are denoted by d∗i and d∗j , respectively.
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draw lies in the indeterminacy region, we first determine with the least-square criterion if it

is closer to the monetary (regime M) or the fiscal boundary (regime F) of the determinacy

region. Then we conduct the following steps:

If the draw’s position in the parameter space is closer to the monetary boundary, we

reparametrize the parameter vector to lie on the monetary boundary.

1. We solve the model on the boundary and compute impulse responses.

2. We step numerically from the boundary into the indeterminacy region, solve the model

and compute impulse responses.

3. To check if the transmission mechanism changes when crossing the boundary, we com-

pute the difference between the impulse responses on the boundary, and the impulse

responses from the indeterminacy region.

We repeat the three steps for the draws that are located closer to the fiscal boundary. Figures

6 and 7 show that the impulse responses (IRFs) are nearly congruent.
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Figure 6: Difference of IRFs computed in the determinacy and the indeterminacy region
around the monetary boundary. The bold line shows posterior means and the solid line 90%
credible sets.

30



5 10 15 20
Quarters

-1

0

1
G

ov
t s

pe
nd

in
g 

   
 10-14 Production         

5 10 15 20
Quarters

-5

0

5

10-14 Inflation          

5 10 15 20
Quarters

0

5

10
10-14 Interest Rate      

5 10 15 20
Quarters

-2

0

2
10-15 Tax                

5 10 15 20
Quarters

-5

0

5
10-14 Debt               

5 10 15 20
Quarters

-2

0

2

4

10-15Govt Purchases     

5 10 15 20
Quarters

0

10

20

P
re

fe
re

nc
e 

   
   

 10-15

5 10 15 20
Quarters

0

5

10
10-14

5 10 15 20
Quarters

-20

-10

0

10-14

5 10 15 20
Quarters

-2

0

2

10-15

5 10 15 20
Quarters

-5

0

5
10-14

5 10 15 20
Quarters

-4

-2

0

10-15

5 10 15 20
Quarters

0

10

20

T
ec

hn
ol

og
y 

   
   

 10-15

5 10 15 20
Quarters

-5

0

5
10-14

5 10 15 20
Quarters

-4

-2

0

10-14

5 10 15 20
Quarters

-1

0

1
10-15

5 10 15 20
Quarters

-2

0

2
10-14

5 10 15 20
Quarters

-2

-1

0

1
10-15

5 10 15 20
Quarters

-20

-10

0

M
ar

ku
p 

   
   

   
  10-14

5 10 15 20
Quarters

-5

0

5
10-13

5 10 15 20
Quarters

-2

0

2

4

10-13

5 10 15 20
Quarters

0

2

4
10-14

5 10 15 20
Quarters

-1

0

1
10-12

5 10 15 20
Quarters

0

2

4

10-14

5 10 15 20
Quarters

-3
-2
-1
0
1

T
ra

ns
fe

rs
   

   
   

10-14

5 10 15 20
Quarters

0

10

20

10-14

5 10 15 20
Quarters

-20

-10

0

10-14

5 10 15 20
Quarters

0

2

4
10-15

5 10 15 20
Quarters

-10

-5

0

5
10-14

5 10 15 20
Quarters

-5

0

5

10

10-15

5 10 15 20
Quarters

-1

0

1

M
on

et
ar

y 
po

lic
y 

  10-14 Production         

5 10 15 20
Quarters

-4

-2

0

2
10-14 Inflation          

5 10 15 20
Quarters

-2

0

2

10-14 Interest Rate      

5 10 15 20
Quarters

-5

0

5
10-15 Tax                

5 10 15 20
Quarters

0

10

20
10-14 Debt               

5 10 15 20
Quarters

-1

0

1

2

10-15Govt Purchases     

5 10 15 20
Quarters

-2

0

2

4

T
ax

es
   

   
   

   
 10-14

5 10 15 20
Quarters

-10

-5

0

5
10-14

5 10 15 20
Quarters

-5

0

5

10
10-14

5 10 15 20
Quarters

0

2

4
10-15

5 10 15 20
Quarters

-1

0

1
10-13

5 10 15 20
Quarters

0

2

4

6

10-15

5 10 15 20
Quarters

-4

-2

0

2

In
fla

tio
n 

ta
rg

et
  10-14

5 10 15 20
Quarters

0

2

4
10-13

5 10 15 20
Quarters

-2

0

2
10-13

5 10 15 20
Quarters

-1
0
1
2
3

10-14

5 10 15 20
Quarters

-10

-5

0

10-13

5 10 15 20
Quarters

-4

-2

0

2
10-14

5 10 15 20
Quarters

-2

0

2

D
eb

t t
ar

ge
t  

   
  10-15

5 10 15 20
Quarters

-2

0

2
10-14

5 10 15 20
Quarters

-1

0

1
10-14

5 10 15 20
Quarters

-5

0

5
10-16

5 10 15 20
Quarters

-1

0

1

10-14

5 10 15 20
Quarters

-5

0

5
10-16

5 10 15 20
Quarters

0

1

2

S
un

sp
ot

   
   

   
  

5 10 15 20
Quarters

0

2

4

6

5 10 15 20
Quarters

0

2

4

6

5 10 15 20
Quarters

0

0.2

0.4

0.6

5 10 15 20
Quarters

-15

-10

-5

5 10 15 20
Quarters

-0.4

-0.2

0

Figure 7: Difference of IRFs computed in the determinacy and the indeterminacy region
around the fiscal boundary. The bold line shows posterior means and the solid line 90%
credible sets.
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Appendix B Prior

In this appendix, we summarize the details of our prior distribution and show results of a

prior predictive analysis.

Appendix B.1 Prior distribution

Table 4: Prior distributions

Prior
Parameter Range Distribution Mean SD 90 percent int.
Monetary policy
φπ, interest rate response to inflation R

+ N 0.8 0.6 [0.14, 1.84]
φY , interest rate response to output R

+ G 0.3 0.1 [0.16, 0.5]
ρR, response to lagged interest rate [0, 1) B 0.6 0.2 [0.24, 0.9]

Fiscal policy
ψb, tax response to lagged debt R N 0 0.1 [−0.16, 0.16]
ψY , tax response to output R N 0.4 0.3 [−0.1, 0.9]
χY , govt spending response to
lagged output

R N 0.4 0.3 [−0.1, 0.9]

ρg, response to lagged govt spending [0, 1) B 0.6 0.2 [0.24, 0.9]
ρτ , response to lagged taxes [0, 1) B 0.6 0.2 [0.24, 0.9]

Preference and HHs
η, habit formation [0, 1) B 0.5 0.2 [0.17, 0.83]
µ := 100(β−1 − 1), discount factor R

+ G 0.25 0.1 [0.11, 0.44]

Frictions
α, price stickiness [0, 1) B 0.5 0.2 [0.17, 0.83]
γ, price indexation [0, 1) B 0.6 0.2 [0.24, 0.9]

Shocks
ρd, preference [0, 1) B 0.6 0.2 [0.24, 0.9]
ρa, technology [0, 1) B 0.4 0.2 [0.1, 0.76]
ρu, cost-push [0, 1) B 0.6 0.2 [0.24, 0.9]
ρs, transfers [0, 1) B 0.6 0.2 [0.24, 0.9]
σg, govt spending R

+ Inv. Gamma 0.1 4 [0.07, 0.24]
σd, preference R

+ Inv. Gamma 0.3 4 [0.19, 0.72]
σa, technology R

+ Inv. Gamma 0.5 4 [0.32, 1.17]
σu, cost-push R

+ Inv. Gamma 0.04 4 [0.026, 0.094]
σs, transfers R

+ Inv. Gamma 0.08 4 [0.052, 0.188]
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Table 4: Prior distributions - continued

Prior
Parameter Range Distribution Mean SD 90 percent int.
σR, monetary policy R

+ Inv. Gamma 0.15 4 [0.098, 0.353]
στ , tax R

+ Inv. Gamma 0.2 4 [0.13, 0.48]
σπ, inflation target R

+ Inv. Gamma 0.003 4 [0.002, 0.007]]
σb, debt/output target R

+ Inv. Gamma 0.05 4 [0.033, 0.118]

Steady state
a := 100(ā− 1), technology R N 0.55 0.1 [0.38, 0.71]
π := 100(π̄ − 1), inflation R N 0.8 0.1 [0.63, 0.96]
b := 100b̄, debt/output R N 35 2 [31.71, 38.3]
τ := 100τ̄ , tax/output R N 25 2 [21.73, 28.27]
g := 100ḡ, govt spending/output R N 22 2 [18.81, 25.31]

Indeterminacy
σζ , sunspot shock R

+ Inv. Gamma 0.2 4 [0.13, 0.48]
Mgζ R N 0 1 [−1.64, 1.64]
Mdζ R N 0 1 [−1.64, 1.64]
Maζ R N 0 1 [−1.64, 1.64]
Muζ R N 0 1 [−1.64, 1.64]
Msζ R N 0 1 [−1.64, 1.64]
MRζ R N 0 1 [−1.64, 1.64]
Mτζ R N 0 1 [−1.64, 1.64]
Mπζ R N 0 1 [−1.64, 1.64]
Mbζ R N 0 1 [−1.64, 1.64]

Note: The Inverse Gamma prior distributions have the form p(x|ν, s) ∝ x−ν−1e−νs
2/2x2 ,

where ν = 4 and s is given by the value in the column denoted as “Mean”.

Appendix B.2 Prior implications

Here, we show results of a prior predictive analysis for the prior specification outlined in

Section 3.1. In particular, we take 20,000 draws from the prior and simulate with these

draws 20,000 times the model’s observables.
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Figure 8: Simulated model observables vs. real data for 1960:Q1 to 1979:Q2. The bold
yellow line shows the actual time series we use for estimating the model. The blue and the
red line show the 90 % intervall of the simulated time series.

Appendix C Data description

We use the dataset of Bhattarai et al. (2016). Unless otherwise noted, the data is retrieved

from the National Income and Product Accounts Tables published by the Bureau of Economic

Analysis. All time series in nominal values are converted to real values by dividing them by

the GDP deflator.

Per capita output: Per capita output is the sum of personal consumption of nondurables

and services, and government consumption divided by civilian noninstitutional pop-

ulation. Civilian noninstitutional poulation is taken from the FRED database of the

Federal Reserve Bank of St. Louis.

34



Inflation: The gross inflation rate is the annualized GDP deflator.

Interest rate: The annualized nominal interest rate is the effective federal funds rate from

the FRED database of the Federal Reserve Bank of St. Louis.

Tax revenues: The tax-revenues-to-output ratio is defined as the sum of current tax re-

ceipts and contributions for government social insurance divided by output.

Government debt: Government debt corresponds to the market value of privately held

gross federal debt, retrieved from the Federal Reserve Bank of Dallas. The government

debt-to-output ratio is obtained by dividing the series by output.

Government spending: The government spending-to-output ratio is defined as govern-

ment consumption divided by output.

The relationship between observables and model variables is given by



100×∆ln Productiont

Inflationt (%)

Interestt (%)

TaxRevt (%)

GovtDebtt (%)

GovtPurcht (%)


=



a

4π

4(a+ π + µ)

τ

b

g


+



Ŷt − Ŷt−1 + ât

4π̂t

4R̂t

τ̂t

b̂t

ĝt


. (27)
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Appendix D SMC algorithm

This appendix gives a technical description of the implemented SMC algorithm. In terms

of exposition and notation it draws heavily on Herbst and Schorfheide (2014, 2015) and

Bognanni and Herbst (2018).

Appendix D.1 SMC with likelihood tempering - intuition

The basic concept of the SMC relies on importance sampling, which means that the posterior

p(ϑ,M |Y ) is approximated by an easy-to-sample proposal, or source density. However, in the

high-dimensional parameter space of DSGE models, good proposal densities are difficult to

obtain. That is why the SMC constructs proposal densities sequentially. More precisely, the

algorithm draws from a sequence of bridge densities that link a known starting distribution

with the targeted posterior density. A meaningful starting distribution constitutes the prior

p(ϑ,M). The bridge distributions, in contrast, differ in the amount of information from the

likelihood they contain. At each stage of the algorithm, an increment of the likelihood is

added to the proposal density. At the moment the full information from the likelihood has

been released, an approximation of the posterior is obtained. In particular, the sequence of

n distributions is given by

pn(ϑ,M |Y ) =
[p(Y |ϑ,M)]δnp(ϑ,M)∫

[p(Y |ϑ,M)]δnp(ϑ,M)dϑdM
, n = 1, ..., Nδ. (28)

We follow Herbst and Schorfheide (2014) and choose the tuning parameter δn as an increasing

sequence of values such that δ1 = 0 and δNδ = 1. The length of this sequence coincides

with the number of importance samplers. At the first stage of the algorithm, p1(ϑ,M |Y )

is the prior density p(ϑ,M). At the last stage, the final proposal density pNδ(ϑ,M |Y )

constitutes the posterior p(ϑ,M |Y ). In particular, our tempering schedule {δn}Nδn=1 is given

by δn = (n− 1/Nδ − 1)λ. The tuning parameter λ determines how much information from

the likelihood is incorporated in each proposal density.
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In a nutshell, the SMC draws in Nδ stages sequentially N parameter vectors ϑi, i =

1, ..., N from the proposal densities and assigns them with importance weights W̃ i. Each of

the i pairs (ϑi, W̃ i) is known as a particle, and the set of particles {(ϑi, W̃ i)}Ni=1 approximates

the density in iteration. Each stage of the SMC consists of three steps. First, in the correction

step of stage n, the particles of the previous stage {(ϑin−1, W̃
i
n−1)}Ni=1 are reweighted to correct

for the difference between pn−1(ϑ,M |Y ) and pn(ϑ,M |Y ). The second step, the selection step,

controls the accuracy of the particle approximation. Whenever the distribution of weights

becomes too uneven, systematic resampling restores a well-balanced set of particles. In the

last step, the mutation step, the particle values are propagated around in the parameter

space by MMH iterations of a RWMH algorithm with Nblocks random blocks. The particles’

new location determines the updated density pn(ϑ,M |Y ).

To estimate the model, we choose the following tuning parameters for the SMC. We use

N = 20, 000 particles, Nδ = 600 stages, λ = 2.4, Nblocks = 10, MMH = 2. As suggested

by Herbst and Schorfheide (2014), λ is determined by examining the particle degeneracy

after the first piece of information of the likelihood was added to the prior density in n = 1.

We increased λ until at least 80% of the total number of particles (16,000) was retained.

To choose Nblocks and MMH , we monitored the acceptance rate in the mutation step in

preliminary runs. Nblocks = 10 and MMH = 2 ensured a stable acceptance rate of 25%

without down-scaling the proposal variance too much.

Appendix D.2 SMC with likelihood tempering - the algorithm

1. The SMC is initialized by drawing the particles of the first stage (n = 1; δ1 = 0) from

the prior density.20

ϑi1
i.i.d.∼ p(ϑ) i = 1, ..., N .

In the first stage, each particle receives equal weight such that W i
1 = 1.

20To ease notation in Appendix D, we assume that the parameters in M are part of ϑ.
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2. Recursions:

for n=2:Nδ

1. Correction: Reweight the particles from stage n − 1 by defining the incremental

and normalized weights as

w̃in =
[
p(Y |ϑin−1)

]δn−δn−1 , W̃ i
n =

w̃inW
i
n−1

1
N

∑N
i=1 w̃

i
nW

i
n−1

, i = 1, ..., N .

2. Selection: Check particle degeneracy by computing the effective sample size

ESSn =
N

1
N

∑N
i=1(W̃ i

n)2
.

The ESS monitors the variance of the particle weights. The larger this variance,

the more inefficient runs the sampler. If the distribution of particle weights be-

comes too uneven, resampling the particles helps to improve accuracy.

if ESSn < N/2

Resample the particles via systematic resampling and set the weights to uniform

W i
n = 1, ϑ̂in ∼ {ϑ

j
n−1, W̃

j
n}j=1,...,N i = 1, ..., N .

else

W i
n = W̃ i

n, ϑ̂in = ϑin−1, i = 1, ..., N

end if

3. Mutation: Propagate each particle {ϑ̃iN ,W i
n} via MMH steps of a RWMH with

Nblocks random blocks. See Appendix D.3 for further details.

end for

3. Process posterior draws.

38



Appendix D.3 Mutation step

In this section, we specify the RWMH sampler we use for particle mutation. In accordance

with Herbst and Schorfheide (2014) and Bognanni and Herbst (2018) the RWMH steps in

our application are characterized by two features. First, we reduce the dimensionality of the

parameter vector ϑ by spliting it into Nblocks blocks, thus making it easier to approximate

the target density in each of the RWMH’s MMH steps.21 Second, we scale the variance of

the proposal density adaptively. Let Σ̂n be the estimate of the covariance of pn(ϑ|Y ) after

the selection step and cn be a scaling factor. We set cn as a function of the previous stage’s

scaling factor cn−1 and the average empirical acceptance rate of the previous stage’s mutation

step Ân−1. We target an acceptance rate of 25 % and, hence, increase cn if the acceptance

rate in stage n− 1 was too high or decrease cn if it was too low. In particular, the functional

form is given by ĉn = ĉn−1f(Ân−1), where f(x) = 0.95 + 0.1 e16(x−0.25)

1+e16(x−0.25) .

1. In every n stage after the selection step, create a random partitioning of the param-

eter vector ϑ into Nblocks. b denotes the block of the parameter vector such that ϑib,n

refers to the b elements of the ith particle, and ϑi<b,n denotes the remaining partitions.

2. Compute an estimate of the covariance of the parameters as

Σ̂n =
N∑
i=1

W i
n(ϑ̂in − µ̂n)(ϑ̂in − µ̂n)′ with µ̂n =

N∑
i=1

W i
nϑ̂

i
n.

The covariance for the bth block is given by

Σ̂b,n = [Σ̂n]b,b − [Σ̂n]b,−b[Σ̂n]−1
−b,−b[Σ̂n]−b,b,

where [Σ̂n]b,b refers to the bth block of Σ̂n.

3. MH steps:

21Chib and Ramamurthy (2010) and Herbst (2012) provide evidence that parameter blocking is benefical
for estimating DSGE models.
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for m=1:MMH

for b=1:Nblocks

1. Draw a proposal density ϑ∗b ∼ N(ϑim−1,b,n, c
2
nΣ̂b,n).

ϑ∗ = [ϑim,<b,n, ϑ
∗
b , ϑ

i
m−1,>b,n] and ϑim,n = [ϑim,<b,n, ϑ

i
m−1,≥b,n].

2. With probability

α = min

{
[p(Y |ϑ∗)]δnp(ϑ∗)

[p(Y |ϑim,n)]δnp(ϑim,n)
, 1

}
,

set ϑim,b,n = ϑ∗b . Otherwise, set ϑim,b,n = ϑim−1,b,n.

end for

end for
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Appendix E Posterior estimates

Appendix E.1 Restricted estimation

In this appendix, we show results of estimations in which we restrict the parameter space

and apply SMC sampling to estimate each policy regime sequentially. The purpose of this

exercise is to show (i) that the SMC sampler is able to replicate the RWMH estimation

results of Bhattarai et al. (2016), our reference study, and (ii) that our prior specification

does not affect the probability of policy regimes in the posterior. Hence, potential differences

in findings are driven neither by the prior specification nor the sampling technique, but rather

induced by restricting or not restricting the parameter space.

Restricted estimation - prior as in Bhattarai et al. (2016)

To understand how changing the posterior sampler influences the estimation results, we

apply the SMC algorithm and replicate, in a first step, the study of Bhattarai et al. (2016).

For this exercise, we follow strictly the approach of Bhattarai et al. (2016). We use the same

dataset, and the same prior distributions.22 Only in terms of posterior sampling, we do not

rely on RWMH sampling, but apply the SMC algorithm instead. We restrict the parameter

space and estimate each policy regime 50 times with the SMC sampler.

Looking at the estimated marginal data densities of each regime, presented in Table 5, we

come to the same conclusion as Bhattarai et al. (2016): the U.S.-economy in the pre-Volcker

period was in the PMPF regime. In this estimation, regime F and regime M receive no

support from the data.

22For details on this prior specification, we refer the reader to the Online Appendix of the original study.
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Table 5: Log marginal data densities for each policy regime from restricted estimation

AMPF PMAF PMPF

Log MDD -541.85 -537.54 -521.41

Note: The log marginal data density is obtained as a by-

product during the correction step of the SMC algorithm,

see Herbst and Schorfheide (2014) for further details. For

each regime, its mean is computed over 50 independent

runs of the SMC algorithm.

Figure 9 shows plots of the posterior densities of the policy parameters for regime F and

the PMPF regime. The mean estimates for the Taylor-coefficient φπ (regime F: 0.71; PMPF:

0.31) and ψb (regime F: -0.08; PMPF: 0.05) are in line with the findings of Bhattarai et al.

(2016). Hence, using the SMC instead of the RWMH algorithm for posterior sampling does

not influence the estimation results.
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Figure 9: Posterior densities of the policy parameters φπ and ψb for regime F and the PMPF
regime.

In the following, we show plots of the prior and posterior densities for the remaining

parameters.
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Figure 10: Prior and posterior densities of the estimated model parameters for regime F.
The blue bold line depicts the posterior density, the black line the prior density. The prior
densities are specified as in Bhattarai et al. (2016).
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Table 6: Posterior distributions for estimated parameters (Regime F)

Posterior
Parameter Mean SD 90 percent credible set

Monetary policy
φπ, interest rate response to inflation 0.71 0.13 [0.53, 0.9]
φ∗π, distance to monetary boundary 0.27 0.13 [0.09, 0.46]
φY , interest rate response to output 0.13 0.06 [0.04, 0.21]
ρR, response to lagged interest rate 0.93 0.07 [0.9, 0.99]

Fiscal policy
ψb, tax response to lagged debt -0.08 0.04 [-0.14, -0.02]
ψ∗b , distance to fiscal boundary 0.08 0.04 [0.02, 0.14]
ψY , tax response to output 0.87 0.3 [0.49, 1.33]
χY , govt spending response to
lagged output

0.63 0.31 [0.24, 1.11]

ρg, response to lagged govt spending 0.91 0.04 [0.85, 0.97]
ρτ , response to lagged taxes 0.68 0.08 [0.55, 0.82]

Preference and HHs
η, habit formation 0.81 0.07 [0.71, 0.91 ]
µ := 100(β−1 − 1), discount factor 0.17 0.07 [0.06, 0.27]

Frictions
α, price stickiness 0.79 0.04 [0.72, 0.86]
γ, price indexation 0.15 0.08 [0.03, 0.27]

Shocks
ρd, preference 0.63 0.18 [0.35, 0.91]
ρa, technology 0.58 0.21 [0.24, 0.9]
ρu, cost-push 0.21 0.09 [0.05, 0.35]
ρs, transfers 0.69 0.07 [0.57, 0.8]
σg, govt spending 0.21 0.02 [0.18, 0.25]
σd, preference 1.71 0.89 [0.41, 3.03]
σa, technology 0.54 0.25 [0.19, 0.89]
σu, cost-push 0.18 0.02 [0.14, 0.22]
σs, transfers 1.01 0.09 [0.87, 1.15]
σR, monetary policy 0.22 0.02 [0.19, 0.25]
στ , tax 0.7 0.07 [0.59, 0.81]
σπ, inflation target 0.09 0.05 [0.3, 0.15]
σb, debt/output target 0.65 0.49 [0.17, 1.44]

Steady state
a := 100(ā− 1), technology 0.43 0.08 [0.31, 0.56]
π := 100(π̄ − 1), inflation 1.1 0.1 [0.94, 1.26]
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Table 6: Posterior distributions for estimated parameters (Regime F) - continued

Posterior
Parameter Mean SD 90 percent credible set
b := 100b̄, debt/output 36.63 2.01 [33.33, 39.93]
τ := 100τ̄ , tax/output 24.92 0.42 [24.26, 25.6]
g := 100ḡ, govt spending/output 24.4 0.4 [23.78, 25.05]

Note: Means, and standard deviations are over 50 independent runs of the SMC al-
gorithm with N = 14, 000, Nδ = 500, λ = 2.5, Nblocks = 6, and MMH = 1. We
compute 90 % highest posterior density intervals.
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PMPF regime
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Figure 11: Prior and posterior densities of the estimated model parameters for the PMPF
regime. The blue bold line depicts the posterior density, the black line the prior density.
The prior densities are specified as in Bhattarai et al. (2016).
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Table 7: Posterior distributions for estimated parameters (PMPF regime)

Posterior
Parameter Mean SD 90 percent credible set

Monetary policy
φπ, interest rate response to inflation 0.31 0.15 [0.06, 0.56]
φ∗π, distance to monetary boundary 0.71 0.05 [0.66, 0.79]
φY , interest rate response to output 0.28 0.02 [0.25, 0.31]
ρR, response to lagged interest rate 0.7 0.03 [0.66, 0.74]

Fiscal policy
ψb, tax response to lagged debt 0.05 0.02 [0.008, 0.08]
ψ∗b , distance to fiscal boundary 0.05 0.01 [0.039, 0.055]
ψY , tax response to output 0.71 0.03 [0.66, 0.77]
χY , govt spending response to
lagged output

0.44 0.07 [0.33, 0.54]

ρg, response to lagged govt spending 0.96 0.004 [0.957, 0.967]
ρτ , response to lagged taxes 0.5 0.03 [0.44, 0.54]

Preference and HHs
η, habit formation 0.23 0.02 [0.21, 0.28 ]
µ := 100(β−1 − 1), discount factor 0.16 0.01 [0.14, 0.18]

Frictions
α, price stickiness 0.68 0.02 [0.65, 0.72]
γ, price indexation 0.4 0.08 [0.3, 0.49]

Shocks
ρd, preference 0.85 0.02 [0.82, 0.88]
ρa, technology 0.37 0.06 [0.27, 0.44]
ρu, cost-push 0.33 0.05 [0.27, 0.41]
ρs, transfers 0.75 0.02 [0.73, 0.77]
σg, govt spending 0.23 0.002 [0.226, 0.23]
σd, preference 0.29 0.02 [0.26, 0.32]
σa, technology 0.52 0.07 [0.42, 0.61]
σu, cost-push 0.21 0.006 [0.2, 0.21]
σs, transfers 1.02 0.008 [1, 1.03]
σR, monetary policy 0.18 0.006 [0.17, 0.19]
στ , tax 0.62 0.01 [0.6, 0.64]
σπ, inflation target 0.06 0.004 [0.05, 0.06]
σb, debt/output target 0.36 0.02 [0.32, 0.39]

Steady state
a := 100(ā− 1), technology 0.41 0.01 [0.39, 0.42]
π := 100(π̄ − 1), inflation 1.06 0.02 [1.03, 1.07]
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Table 7: Posterior distributions for estimated parameters (PMPF regime) - continued

Posterior
Parameter Mean SD 90 percent credible set
b := 100b̄, debt/output 36.4 0.31 [35.97, 36.77]
τ := 100τ̄ , tax/output 25.06 0.09 [24.94, 25.17]
g := 100ḡ, govt spending/output 24.13 0.08 [24.04, 24.28]

Indeterminacy
σζ , sunspot shock 0.26 0.05 [0.22, 0.3]
Mgζ -0.29 0.11 [-0.43, -0.13]
Mdζ 0.6 0.2 [0.42, 0.92]
Maζ -0.2 0.08 [-0.34, -0.1]
Muζ -0.44 0.15 [-0.59, -0.25]
Msζ 0.08 0.03 [0.03, 0.12]
MRζ 0.43 0.18 [0.22, 0.68]
Mτζ -0.3 0.1 [-0.46, -0.2]
Mπζ -0.05 0.16 [-0.28, 0.26]
Mbζ -0.006 0.13 [-0.18, 0.12]

Note: Means, and standard deviations are over 50 independent runs of the SMC algo-
rithm with N = 14, 000, Nδ = 500, λ = 2.5, Nblocks = 6, and MMH = 1. We compute 90
% highest posterior density intervals.
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Restricted estimation - prior as in Section 3.1 with renormalized policy param-

eters

In a next step, we conduct the restricted SMC estimation with the prior specification as

outlined in Section 3.1. One exception is the prior specifications for the policy parameters

φπ and ψb. To ensure that we completely impose a particular policy regime during estimation,

we again follow Bhattarai et al. (2016) and estimate the model with the reparameterized

policy parameters φ∗π and ψ∗b . φ∗π follows a Gamma distribution with a mean of 0.5 and

a standard deviation of 0.2. ψ∗b is also Gamma-distributed and has a mean of 0.05 and a

standard deviation of 0.04. The prior densities of the remaining parameters are specified as

in Section 3.1.

Table 8 shows the estimated marginal data densities of each regime. Also, with the prior

specification of Section 3.1, we come to the conclusion that in the U.S. in the pre-Volcker

period the PMPF regime receives the best support from the data.

Table 8: Log marginal data densities for each policy regime from restricted estimation

AMPF PMAF PMPF

Log MDD -548.72 -542.72 -523.17

Note: The log marginal data density is obtained as a by-

product during the correction step of the SMC algorithm,

see Herbst and Schorfheide (2014) for further details. For

each regime, its mean is computed over 50 independent

runs of the SMC algorithm.

Figure 12 shows plots of the posterior densities of the policy parameters for regime F and

the PMPF regime. The shapes of the posterior densities are comparable to the findings in

the previous subsection. The mean estimates for the Taylor-coefficient φπ (regime F: 0.54;

PMPF: 0.11) and ψb (regime F: -0.02; PMPF: 0.05) change only slightly. Hence, using, a for

our exercise more suitable, prior specification together with SMC posterior sampling does
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not influence the estimation results.
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Figure 12: Posterior densities of the policy parameters φπ and ψb for regime F and the PMPF
regime.

To make the results of the restricted estimation more comparable to the unrestricted

estimation, we renormalized the policy parameters φ∗π and ψ∗b to φπ and ψb in the density

plots.
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Regime F
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Figure 13: Prior and posterior densities of the estimated model parameters for regime F. The
blue bold line depicts the posterior density, the black line the prior density. The densities of
φ∗π and ψ∗b are specified as in Bhattarai et al. (2016), the remaining parameters as in Section
3.1.

Table 9: Posterior distributions for estimated parameters (Regime F)

Posterior
Parameter Mean SD 90 percent credible set

Monetary policy
φπ, interest rate response to inflation 0.54 0.12 [0.33, 0.73]
φ∗π, distance to monetary boundary 0.35 0.05 [0.31, 0.43]
φY , interest rate response to output 0.44 0.06 [0.4, 0.54]
ρR, response to lagged interest rate 0.56 0.09 [0.38, 0.63]

Fiscal policy
ψb, tax response to lagged debt -0.02 0.01 [-0.04, -0.005]
ψ∗b , distance to fiscal boundary 0.027 0.007 [0.02, 0.04]
ψY , tax response to output 0.58 0.39 [-0.25, 0.86]
χY , govt spending response to
lagged output

0.38 0.36 [-0.38, 0.63]
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Table 9: Posterior distributions for estimated parameters (Regime F) - continued

Posterior
Parameter Mean SD 90 percent credible set
ρg, response to lagged govt spending 0.93 0.02 [0.9, 0.95]
ρτ , response to lagged taxes 0.66 0.07 [0.61, 0.79]

Preference and HHs
η, habit formation 0.69 0.1 [0.49, 0.78 ]
µ := 100(β−1 − 1), discount factor 0.17 0.01 [0.16, 0.19]

Frictions
α, price stickiness 0.85 0.02 [0.83, 0.86]
γ, price indexation 0.13 0.06 [0.09, 0.22]

Shocks
ρd, preference 0.86 0.03 [0.82, 0.9]
ρa, technology 0.33 0.04 [0.26, 0.37]
ρu, cost-push 0.77 0.17 [0.45, 0.88]
ρs, transfers 0.72 0.03 [0.65, 0.74]
σg, govt spending 0.22 0.006 [0.21, 0.23]
σd, preference 0.87 0.14 [0.58, 1.03]
σa, technology 0.56 0.01 [0.55, 0.58]
σu, cost-push 0.06 0.03 [0.04, 0.12]
σs, transfers 1 0.003 [0.997, 1.01]
σR, monetary policy 0.15 0.01 [0.13, 0.16]
στ , tax 0.68 0.03 [0.66, 0.72]
σπ, inflation target 0.004 0 [0.0036, 0.0039]
σb, debt/output target 0.06 0.001 [0.059, 0.064]

Steady state
a := 100(ā− 1), technology 0.47 0.007 [0.46, 0.48]
π := 100(π̄ − 1), inflation 0.81 0.02 [0.79, 0.83]
b := 100b̄, debt/output 35.5 0.16 [35.28, 35.62]
τ := 100τ̄ , tax/output 25.26 0.12 [25.05, 25.36]
g := 100ḡ, govt spending/output 24.31 0.09 [24.24, 24.45]

Note: Means, and standard deviations are over 50 independent runs of the SMC al-
gorithm with N = 14, 000, Nδ = 500, λ = 2.5, Nblocks = 6, and MMH = 1. We
compute 90 % highest posterior density intervals.

55



PMPF regime

0 0.2 0.4 0.6 0.8 1
0

5
y
           

Prior
Posterior

-1 -0.5 0 0.5 1 1.5 2
0

1

2

y
           

-2 -1 0 1 2
0

0.5

1

y
           

0 0.2 0.4 0.6 0.8 1
0

5
           

0 0.2 0.4 0.6 0.8 1
0

5
             

0 0.2 0.4 0.6 0.8 1
0

1

2

           

0 0.2 0.4 0.6 0.8 1
0

10

20

g
           

0 0.2 0.4 0.6 0.8 1
0

5

d
           

0 0.2 0.4 0.6 0.8 1
0

1

2

a
           

0 0.2 0.4 0.6 0.8 1
0

1

2
u
           

0 0.2 0.4 0.6 0.8 1
0

5
s
           

0 0.2 0.4 0.6 0.8 1
0

5
r
           

0 0.2 0.4 0.6 0.8 1
0

2

4

      

0 1 2 3 4 5
0

10

20
g
         

0 5 10 15
0

5

d
         

56



0 10 20 30 40 50 60
0

1

2

a
         

Prior
Posterior

0 0.5 1 1.5
0

10

20

u
         

0 1 2 3 4
0

5

10
s
         

0 1 2 3 4 5
0

10

20

r
         

0 1 2 3 4 5 6
0

5

    

0 0.05 0.1 0.15
0

200

400

     

0 0.5 1 1.5 2 2.5 3
0

10

20

b
         

0 0.2 0.4 0.6 0.8 1 1.2
0

5

abar             

0.2 0.4 0.6 0.8 1 1.2 1.4
0

5
pibar            

0 0.2 0.4 0.6 0.8 1
0

5

mubar            

25 30 35 40 45
0

0.1

0.2
bbar             

10 15 20 25 30 35 40
0

0.5

1

taubar           

10 15 20 25 30 35
0

0.5

1
gbar             

0 1 2 3 4 5 6
0

5

sun
     

-6 -4 -2 0 2 4 6
0

0.5

1

M
g
              

-5 0 5
0

0.5

M
d
              

Prior
Posterior

-6 -4 -2 0 2 4
0

1

2

M
a
              

-5 0 5
0

0.5

M
u
              

-6 -4 -2 0 2 4 6
0

5

M
s
              

-6 -4 -2 0 2 4 6
0

0.5

1

M
r
              

-6 -4 -2 0 2 4 6
0

1

2

M          

-6 -4 -2 0 2 4 6
0

0.2

0.4

M           

-6 -4 -2 0 2 4 6
0

0.5

M
b
              

Figure 14: Prior and posterior densities of the estimated model parameters for the PMPF
regime. The blue bold line depicts the posterior density, the black line the prior density. The
densities of φ∗π and ψ∗b are specified as in Bhattarai et al. (2016), the remaining parameters
as in Section 3.1.
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Table 10: Posterior distributions for estimated parameters (PMPF regime)

Posterior
Parameter Mean SD 90 percent credible set

Monetary policy
φπ, interest rate response to inflation 0.11 0.19 [-0.18, 0.42]
φ∗π, interest rate response to inflation 0.87 0.05 [0.83, 0.95]
φY , interest rate response to output 0.39 0.02 [0.36, 0.41]
ρR, response to lagged interest rate 0.71 0.02 [0.69, 0.73]

Fiscal policy
ψb, tax response to lagged debt 0.05 0.02 [0.02, 0.09]
ψ∗b , distance to fiscal boundary 0.06 0.004 [0.05, 0.06]
ψY , tax response to output 0.73 0.03 [0.7, 0.78]
χY , govt spending response to
lagged output

0.37 0.05 [0.29, 0.45]

ρg, response to lagged govt spending 0.97 0.002 [0.962, 0.969]
ρτ , response to lagged taxes 0.45 0.03 [0.4, 0.49]

Preference and HHs
η, habit formation 0.19 0.02 [0.16, 0.21 ]
µ := 100(β−1 − 1), discount factor 0.17 0.01 [0.16, 0.19]

Frictions
α, price stickiness 0.77 0.02 [0.74, 0.79]
γ, price indexation 0.31 0.04 [0.22, 0.35]

Shocks
ρd, preference 0.85 0.01 [0.83, 0.87]
ρa, technology 0.26 0.02 [0.22, 0.29]
ρu, cost-push 0.48 0.07 [0.38, 0.59]
ρs, transfers 0.74 0.01 [0.73, 0.76]
σg, govt spending 0.22 0.001 [0.219, 0.222]
σd, preference 0.31 0.01 [0.29, 0.33]
σa, technology 0.69 0.05 [0.63, 0.73]
σu, cost-push 0.16 0.01 [0.15, 0.18]
σs, transfers 1.01 0.006 [0.99, 1.01]
σR, monetary policy 0.16 0.003 [0.155, 0.163]
στ , tax 0.59 0.01 [0.57, 0.6]
σπ, inflation target 0.004 0 [0.003, 0.004]
σb, debt/output target 0.06 0.004 [0.056, 0.068]

Steady state
a := 100(ā− 1), technology 0.45 0.008 [0.44, 0.46]
π := 100(π̄ − 1), inflation 0.77 0.01 [0.75, 0.79]
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Table 10: Posterior distributions for estimated parameters (PMPF regime) - continued

Posterior
Parameter Mean SD 90 percent credible set
b := 100b̄, debt/output 35.4 0.26 [35.02, 35.75]
τ := 100τ̄ , tax/output 24.01 0.06 [24.82, 24.99]
g := 100ḡ, govt spending/output 23.99 0.05 [23.93, 24.08]

Indeterminacy
σζ , sunspot shock 0.22 0.01 [0.21, 0.23]
Mgζ -0.28 0.06 [-0.37, -0.2]
Mdζ 0.67 0.13 [0.48, 0.85]
Maζ -0.26 0.07 [-0.35, -0.19]
Muζ -0.41 0.09 [-0.54, -0.4]
Msζ 0.07 0.02 [0.04, 0.09]
MRζ 0.34 0.08 [0.24, 0.47]
Mτζ -0.35 0.08 [-0.46, -0.25]
Mπζ -0.02 0.1 [-0.18, 0.15]
Mbζ 0 0.03 [-0.11, 0.14]

Note: Means, and standard deviations are over 50 independent runs of the SMC algo-
rithm with N = 14, 000, Nδ = 500, λ = 2.5, Nblocks = 6, and MMH = 1. We compute 90
% highest posterior density intervals.
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Appendix E.2 Unrestricted estimation

Here, we show plots of the prior and posterior densities for the remaining parameters from

the unrestricted estimation with the SMC sampler and tables that summarize the estima-

tion results. Here, the prior specification and the estimation approach corresponds to the

description in Section 3.
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Figure 15: Prior and posterior densities of the estimated model parameters from the unre-
stricted estimation. The blue bold line depicts the posterior density, the black line the prior
density.
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Table 11: Posterior distributions for estimated parameters (Unrestricted)

Posterior
Parameter Mean SD 90 percent credible set
Monetary policy
φπ, interest rate response to inflation 0.4 0.22 [0.13, 0.73]
φY , interest rate response to output 0.53 0.1 [0.4, 0.67]
ρR, response to lagged interest rate 0.61 0.11 [0.38, 0.74]

Fiscal policy
ψb, tax response to lagged debt 0.026 0.04 [-0.05, 0.08]
ψY , tax response to output 0.62 0.5 [-0.51, 1.05]
χY , govt spending response to
lagged output

0.38 0.35 [-0.25, 0.86]

ρg, response to lagged govt spending 0.95 0.02 [0.91, 0.97]
ρτ , response to lagged taxes 0.66 0.11 [0.5, 0.81]

Preference and HHs
η, habit formation 0.45 0.23 [0.20, 0.81 ]
µ := 100(β−1 − 1), discount factor 0.19 0.04 [0.14, 0.22]

Frictions
α, price stickiness 0.84 0.04 [0.8, 0.92]
γ, price indexation 0.31 0.12 [0.12, 0.44]

Shocks
ρd, preference 0.73 0.11 [0.52, 0.87]
ρa, technology 0.33 0.08 [0.22, 0.41]
ρu, cost-push 0.41 0.2 [0.15, 0.71]
ρs, transfers 0.72 0.04 [0.64, 0.77]
σg, govt spending 0.23 0.01 [0.22, 0.24]
σd, preference 0.88 0.61 [0.31, 1.78]
σa, technology 0.62 0.09 [0.52, 0.72]
σu, cost-push 0.15 0.05 [0.09, 0.22]
σs, transfers 1.04 0.02 [1, 1.06]
σR, monetary policy 0.16 0.02 [0.13, 0.18]
στ , tax 0.7 0.05 [0.64, 0.77]
σπ, inflation target 0.006 0.006 [0.008, 0.02]
σb, debt/output target 0.15 0.05 [0.11, 0.2]

Steady state
a := 100(ā− 1), technology 0.42 0.03 [0.39, 0.45]
π := 100(π̄ − 1), inflation 0.8 0.05 [0.74, 0.87]
b := 100b̄, debt/output 35.62 0.79 [34.74, 36.44]
τ := 100τ̄ , tax/output 24.97 0.18 [24.68, 25.2]
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Table 11: Posterior distributions for estimated parameters (Unrestricted) - continued

Posterior
Parameter Mean SD 90 percent credible set
g := 100ḡ, govt spending/output 24.12 0.21 [23.82, 24.48]

Indeterminacy
σζ , sunspot shock 0.49 0.14 [0.27, 0.68]
Mgζ -0.58 0.58 [-1.43, 0.03]
Mdζ -0.11 0.35 [-0.69, 0.33]
Maζ -0.41 0.43 [-0.94, 0.17]
Muζ -1.09 0.98 [-2.37, 0.03]
Msζ -0.04 0.14 [-0.28, 0.16]
MRζ 0.5 0.64 [-0.21, 1.22]
Mτζ -0.13 0.38 [-0.7, 0.22]
Mπζ 0 0.45 [-0.54, 0.46]
Mbζ -0.07 0.29 [-0.34, 0.45]
Log Marginal data density -558.84

Note: Means, standard deviations, and estimates of the log marginal data density are
over 50 independent runs of the SMC algorithm with N = 20, 000, Nδ = 600, λ = 2.4,
Nblocks = 10, and MMH = 2. We compute 90 % highest posterior density intervals. The
log marginal data density is obtained as a by-product during the correction step of the
SMC algorithm, see Herbst and Schorfheide (2014) for further details.
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Appendix E.3 Unrestricted estimation - posterior densities con-

ditional on regime F and the PMPF regime

Here, we show plots of the prior and posterior densities conditional on regime F and inde-

terminacy from the unrestricted estimation with the SMC sampler for the policy parameters

φπ and ψb, and the remaining parameters.
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Figure 16: Prior and conditional posterior densities of the estimated model parameters from
the unrestricted estimation. The blue bold line depicts the posterior density conditional on
regime F, the dashed blue line the posterior density conditional on the PMPF regime, and
the black line the prior density.
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Appendix F Smoothed shocks

Here, we show plots of the remaining smoothed shocks for regime F and the PMPF regime,

respectively.
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Figure 17: Smoothed shocks for 1960:Q1 to 1979:Q2 for regime F and the PMPF regime.
The dashed line shows shocks computed at the mean of the posterior density from the
unrestricted estimation conditional on regime F. The solid line shows shocks computed at
the mean of the posterior density from the unrestricted estimation conditional on the PMPF
regime.
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